4.7 Article

Defluorination study of spent carbon cathode by microwave high-temperature roasting

Journal

JOURNAL OF ENVIRONMENTAL MANAGEMENT
Volume 302, Issue -, Pages -

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2021.114028

Keywords

Spent carbon cathode; High-temperature treatment; Microwave-assisted roasting; Fluorides; Defluorination

Funding

  1. National Key R&D Program of China [2018YFC1901904]
  2. Yunnan Basic Research Key Project [202101AS070023]
  3. Basic Research Key Project of Yunnan [140520210012]
  4. National Natural Science Foun-dation of China [51864030]
  5. Yunnan Provincial Sci-ence and Technology Talents Program [2019HB003]
  6. Yunnan Science and Technology Major Project [2019ZE001, 2018ZE027]
  7. Yunnan Provincial youth top-notch talent support program
  8. Scientific Research Fund of Kunming Univer-sity of Science and Technology [KKZ3201752046, KKSY201732033]

Ask authors/readers for more resources

The study developed a microwave-assisted high-temperature roasting technology to treat spent carbon cathode, effectively removing fluorides and improving the defluorination efficiency to 95.4%. The process under microwave showed more defects compared to traditional roasting method, providing new guidance for the treatment and recycling of spent SCC.
Spent carbon cathode (SCC) produced in the process of aluminum electrolysis is a typical toxic and hazardous solid waste. Therefore, the harmless treatment of SCC is extremely important for the green development of aluminum electrolysis industry. In this paper, the microwave-assisted high-temperature roasting technology was developed to remove fluorides in SCC for recycling of this cathode. The melting point, dielectric parameter, crystalline structure, surface chemical property, elemental composition, morphological structure, carbon graphitization and surface area were characterized using thermogravimetric analysis and differential scanning calorimetry, high-temperature composite conductivity analyzer, X-ray diffraction, X-ray fluorescence, X-ray photoelectron spectroscopy, scanning electronic microscopy, transmission electron microscopy, Raman spectroscopy and isothermal N2 adsorption-desorption method. The content of fluorides in raw and treated SCC was measured by ion activity meter. The results showed that the phase of sodium fluoride and cryolite would transform from solid to liquid when the temperature was higher than 1098.5 degrees C, and the SCC exhibited good performance on wave absorption with the action depth of 1 cm. The SCC was mainly composed of 57.94 wt% C, 14.23 wt% NaF, 1.80 wt%, CaF2, 15.06 wt% Na3AlF6, and 10.97 wt% Other. After treatment under microwave, the graphite carbon exhibited pitting structure and the fluorides could be effectively removed. In addition, the average layer spacing of graphite was increased from 0.34 to 0.36 nm. The defluorination of SCC could be enhanced with the increase of roasting temperature, which would attain 95.4% at 1500 degrees C. Compared with the traditional roasting method, the process under microwave showed more defects, which would provide a new guidance for the treatment and recycling of spent SCC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available