4.7 Article

Nitrogen removal from poultry slaughterhouse wastewater in anaerobic-anoxic-aerobic combined reactor: Integrated effect of recirculation rate and hydraulic retention time

Journal

JOURNAL OF ENVIRONMENTAL MANAGEMENT
Volume 303, Issue -, Pages -

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2021.114162

Keywords

Carbon and nitrogen removal; Endogenous denitrification; Kinetic of organic matter removal; Single reactor

Funding

  1. Coordination for the Improvement of Higher Education Personnel (CAPES)
  2. National Council for Scientific and Technological Development (CNPq)

Ask authors/readers for more resources

The study evaluated nitrogen removal from slaughterhouse wastewater in an anaerobic-anoxic-aerobic combined reactor, with the integrated effect of recirculation rate and hydraulic retention time. The highest performance was achieved with a recirculation rate of 2 and hydraulic retention time of 11 hours, resulting in NH4+ and TN removals of 84% and 65% respectively.
The aim of this work was to assess the nitrogen removal from slaughterhouse wastewater in an anaerobic-anoxicaerobic combined reactor, evaluating the integrated effect of recirculation rate and hydraulic retention time. The recirculation of the liquid phase from the aerobic zone to the anoxic zone was applied to promote the denitrification through the use of endogenous electron donors. Three recirculation rates (R: 0.5, 1 and 2) and three hydraulic retention times (14, 11 and 8 h) were applied. The operation of the reactor was divided into 3 steps (I, II, and III) according to the factors evaluated (recirculation rate and HRT), to achieve operational conditions that would allow satisfactory performance in the different compartments of the reactor. During the experiment the reactor was fed with average total nitrogen (TN) and chemical oxygen demand (COD) of 65 mg L-1 and 580 mg L-1, respectively. The denitrification efficiency (theoretical) and kinetics parameters for COD decay were calculated. The highest performance was verified in the Step III (R = 2) and HRT of 11 h with NH4+ and TN removals of 84% and 65%, respectively. The TN removal efficiency (65%) was considered satisfactory, since the theoretical denitrification efficiency expected for this condition (R = 2) is 67%, without addition of an external carbon source. The lowest nitrification efficiency values were obtained in HRT of 8 h in the Step I and II (R = 0.5 and 1, respectively), indicating that the nitrification time (3 h - aerobic phase) may be the limiting factor in this HRT. The COD removal efficiency was high in all assays (>95%). The values of the kinetic degradation constants of organic matter were close for all recirculation rates, and the highest values were recorded for the HRT of 8 h and R = 1 and R = 2 ( 0.48 and 0.43, respectively).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available