4.7 Article

Ensemble system for short term carbon dioxide emissions forecasting based on multi-objective tangent search algorithm

Journal

JOURNAL OF ENVIRONMENTAL MANAGEMENT
Volume 302, Issue -, Pages -

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2021.113951

Keywords

Daily carbon emission forecasting; Ensemble forecasting system; Multi-objective tangent search algorithm; Sub-model selection

Ask authors/readers for more resources

The study introduces a novel carbon emissions forecasting system, which includes point and interval prediction, to improve forecast accuracy and stability through data decomposition, model selection, phase space reconstruction, and other steps.
Carbon emissions play a crucial role in inducing global warming and climate change. Accurate and stable carbon emissions forecasting is beneficial for formulating emissions reduction schemes and achieving carbon neutrality as early as possible. Although previous studies have concentrated on employing one or several methods for carbon emissions forecasting, the improvement in forecasting performance is limited because they ignore the importance of objectively selecting the models and the necessity of interval forecasting. In this paper, a novel ensemble prediction system, composed of data decomposition, model selection, phase space reconstruction, ensemble point prediction, and interval prediction, is proposed to conduct both point and interval predictions, which has been proven to be effective in prompting carbon emissions forecasting accuracy and stability. According to the empirical results, the mean MAPE results of our proposed forecasting strategy in point prediction are 1.1102% (in Dataset A) and 1.1382% (in Dataset B), and the mean CWC values in the interval forecasting are 0.3512 and 0.1572, respectively. Thus, the proposed forecasting system improves the forecasting performance relative to other models considerably, which can provide meaningful references for policymakers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available