4.7 Article

Cleanup of arsenic, cadmium, and lead in the soil from a smelting site using N,N-bis(carboxymethyl)-L-glutamic acid combined with ascorbic acid: A lab-scale experiment

Journal

JOURNAL OF ENVIRONMENTAL MANAGEMENT
Volume 296, Issue -, Pages -

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2021.113174

Keywords

GLDA; Ascorbic acid; Combined washing; Heavy metals; Smelting site soil

Funding

  1. National Key Research and Devel-opment Program of China [2018YFC1800400]
  2. Fundamental Research Funds for the Central Universities of Central South University [1053320192303]

Ask authors/readers for more resources

The study identified that GLDA combined with ascorbic acid can efficiently remove As, Cd, and Pb from smelting site soils under appropriate washing conditions, through mechanisms such as chelation, reduction, and proton obstruction. The results indicated that this combination technology is effective in simultaneously removing these heavy metals from contaminated soils.
Chemical washing has been carried out to remediate soil contaminated with heavy metals. In this study, the appropriate washing conditions for N,N-bis(carboxymethyl)-L-glutamic acid (GLDA) combined with ascorbic acid were determined to remove As, Cd, and Pb in the soil from the smelting site. The mechanism of heavy metal removal by the washing agent was also clarified. The results showed that heavy metals in the soil from the smelting site can be effectively removed. The removal percentages of As, Cd, and Pb in the soil from the smelting site were found to be 34.49%, 63.26%, and 62.93%, respectively, under optimal conditions (GLDA and ascorbic acid concentration ratio of 5:20, pH of 3, washing for 60 min, and the liquid-to-solid ratio of 10). GLDA combined with ascorbic acid efficiently removes As, Cd, and Pb from the soil through synergistic proton obstruction, chelation, and reduction. GLDA can chelate with iron and aluminum oxides while directly chelate with Cd and Pb. Ascorbic acid can reduce both Fe(III) to Fe(II) and As(III) to As-0. The dissolution of As was promoted by indirectly preempting the binding sites of iron and aluminum in the soil while those of Cd and Pb were improved by directly interrupting the binding sites. This study suggested that GLDA combined with ascorbic acid is an effective cleanup technology to remove As, Cd, and Pb simultaneously from contaminated smelting site soils.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available