4.7 Article

Impact of barge movement on phytoplankton diversity in a river: A Bayesian risk estimation framework

Journal

JOURNAL OF ENVIRONMENTAL MANAGEMENT
Volume 296, Issue -, Pages -

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2021.113227

Keywords

Phytoplankton; Barge-movement; Diversity loss; Relative risk; Bayesian analysis; MCMC; JAGS

Funding

  1. Inland Water Authority of India

Ask authors/readers for more resources

This study proposed a new risk assessment framework to evaluate the phytoplankton diversity loss induced by barge movement, successfully uncoupling the impact over a spatiotemporal scale. The results identified significant barge-induced impact on phytoplankton diversity and predicted an overall risk of phytoplankton loss. The study also highlighted the utility of these results for better water framework directive for inland waterways.
The adverse effect of barge movement on the river's aquatic ecosystem is of global concern. The phytoplankton community, a bioindicator, is possibly the foremost victim of the barge movement. This study hypothesized phytoplankton diversity loss induced by barge movement in a large river. This article presents a novel risk assessment framework to evaluate the hypothesis-with a goal to uncoupling phytoplankton diversity loss due to barge movement over a spatiotemporal scale. For this purpose, a study was conducted in the Bhagirathi-Hooghly stretch of Inland National Waterway 1 of India. This study has proposed a new index of diversity loss and its inferential framework based on full Bayesian Generalized Linear Mixed Model. The results have diagnosed significant barge-induced impact on the phytoplankton diversity and identified ten most impacted species. The proposed framework has successfully disentangled barge-induced phytoplankton diversity loss from the biological process and predicted a substantive overall risk of phytoplankton loss of 31.44%. Besides, it has uncoupled spatiotemporal differential estimates, suggesting a risk of diversity loss in order of 'During vs After' (38.0%) > 'Before vs After' (30.7%) > 'Before vs During' (24%) barge movement in temporal scale and increasing diversity loss along downstream. Finally, the instant study has highlighted the utility of these results to facilitate better water framework directive for inland waterways.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available