4.7 Article

Quinones contained in wastewater as redox mediators for the synergistic removal of azo dye in microbial fuel cells

Journal

JOURNAL OF ENVIRONMENTAL MANAGEMENT
Volume 301, Issue -, Pages -

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2021.113924

Keywords

Quinone-rich wastewater; Synergistic removal; Redox mediators; Biofilm formation; Stress tolerance

Ask authors/readers for more resources

This study investigated the enhanced effects of quinones in wastewater on microbial fuel cells (MFCs) under different redox conditions. Results show that quinones improve electricity generation and COD removal in MFCs at higher current intensity. Using quinone-rich traditional Chinese medicine wastewater as co-substrate enhances the synergistic removal of azo dye in MFCs compared to sodium acetate.
The present paper aimed to investigate the roles of quinones contained in wastewater and the enhanced effects on microbial fuel cells (MFCs) under different redox conditions. The feasibility of using wastewater rich in quinones to act as co-substrate and redox mediators (RMs) library to strengthen the synergistic removal of azo dye in MFCs was evaluated. The results demonstrated that quinones achieved enhanced effects on electricity generation and COD removal of MFC better at higher current intensity. The addition of pure quinone decreased electron transfer resistance (Rct) of MFCs from 4.76 omega to 2.13 omega under 1000 omega resistance and 1.16 omega-0.75 omega under 50 omega resistance. Meanwhile, higher coulombic efficiency was achieved. Compared with sodium acetate, using quinone-rich traditional Chinese medicine (TCM) wastewater as the co-substrate enhanced the synergistic removal of reactive red 2 (RR2) in MFCs from 79.58% to 92.45% during 24 h. RR2 was also degraded more thoroughly due to the accelerated electron transfer process mediated by RMs. Microbial community analysis demonstrated that the presence of quinone in TCM wastewater can enrich different exoelectrogens under varied redox conditions and thus influenced the enhanced effects on MFC. Metagenomic functional prediction results further indicated that the abundance of functional genes involved in carbohydrate metabolism, membrane transport metabolism, biofilm formation, and stress tolerance increased significantly in presence of RMs. Redundancy analyses revealed that RMs addition was the more important factor driving the variation of the microorganism community. This study revealed the potential effect of quinones as redox mediators on the bioelectrochemical system for pollutants removal.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available