4.7 Article

Spatio-temporal variability in soil CO2 efflux and regulatory physicochemical parameters from the tropical urban natural and anthropogenic land use classes

Journal

JOURNAL OF ENVIRONMENTAL MANAGEMENT
Volume 295, Issue -, Pages -

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2021.113141

Keywords

Anthropogenic impact; Land use; Nutrient availability; Physicochemical properties; Soil respiration; Urban ecosystem

Funding

  1. University Grants Commission (UGC), New Delhi, India

Ask authors/readers for more resources

This study assessed the seasonal and temporal variability in soil CO2 efflux (SCE) and its regulatory physicochemical variables under different urban land use classes. Results showed significant differences in SCE among different land use types, with soil organic C and N contents influencing SCE.
Urban ecosystems, the heterogeneous and rapidly changing landscape, showed a considerable impact on the global C cycle. However, studies encompassing the spatial differences in urban land uses on soil C dynamics are limited in tropical ecosystems. In this study, seasonal and temporal variability in soil CO2 efflux (SCE) and its regulatory physicochemical variables under five urban land use classes viz., Bare (BAR), Agriculture (AGR), Plantation (PLT), Grassland (GRA) and Lawns (LAW) were assessed from 2014 to 2016. Bare land use was considered as the reference for observing the variation for different land uses. Seasonal measurements of SCE, soil temperature, moisture content, pH, ammonium-N, nitrate-N and microbial biomass C (MBC) were performed whereas soil organic C (SOC), soil N, and soil physical properties were measured annually. Our results showed a significant (P < 0.01) increase in SCE by 89%, 117%, 132% and 166% for land use types from BAR to AGR, PLT, GRA and LAW, respectively. The results revealed a two-fold increase in SCE from anthropogenically managed urban lawns as compared to bare soil. PLT and LAW land use classes showed higher SOC and N contents. SCE was found positively correlated with temperature, moisture, SOC, soil N and MBC whereas negatively correlated with ammonium-N and nitrate-N (at P < 0.05) for the overall dataset. Soil moisture, temperature, SOC, porosity and pH were identified as the major determinant of urban SCE by explaining 63% of the variability in overall SCE. Further, temperature for BAR and LAW; moisture for PLT; ammonium-N for GRA; and nitrate-N for AGR were identified as the major regulators of SCE for different land use classes. The findings revealed that the interaction of soil temperature and moisture with nutrient availability regulates overall and seasonal variability in SCE in an urban ecosystem. Since these variables are highly affected by climate change, thus, the soil C source-sink relationships in tropical urban ecosystems may further change and induce a positive global warming potential from urban ecosystems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available