4.7 Article

Hydrodynamic limits and numerical errors of isothermal lattice Boltzmann schemes

Journal

JOURNAL OF COMPUTATIONAL PHYSICS
Volume 450, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcp.2021.110858

Keywords

Lattice Boltzmann; Asymptotic analysis; Hydrodynamic limits; Regularization; MRT; TRT

Ask authors/readers for more resources

This article proposes a method for studying the numerical properties of the lattice Boltzmann method (LBM), which reveals the deviations from the Navier-Stokes equations through the derivation of its hydrodynamic limits. The errors and dissipation characteristics of different collision models are explained through detailed analysis.
With the aim of better understanding the numerical properties of the lattice Boltzmann method (LBM), a general methodology is proposed to derive its hydrodynamic limits in the discrete setting. It relies on a Taylor expansion in the limit of low Knudsen numbers. With a single asymptotic analysis, two kinds of deviations with the Navier-Stokes (NS) equations are explicitly evidenced: consistency errors, inherited from the kinetic description of the LBM, and numerical errors attributed to its space and time discretization. The methodology is applied to the Bhatnagar-Gross-Krook (BGK), the regularized and the multiple relaxation time (MRT) collision models in the isothermal framework. Deviation terms are systematically confronted to linear analyses in order to validate their expressions, interpret them and provide explanations for their numerical properties. The low dissipation of the BGK model is then related to a particular pattern of its error terms in the Taylor expansion. Similarly, dissipation properties of the regularized and MRT models are explained by a phenomenon referred to as hyperviscous degeneracy. The latter consists in an unexpected resurgence of high-order Knudsen effects induced by a large numerical prefactor. It is at the origin of over-dissipation and severe instabilities in the low-viscosity regime. (C) 2021 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available