4.7 Article

Facile construction of novel organic-inorganic tetra (4-carboxyphenyl) porphyrin/Bi2MoO6 heterojunction for tetracycline degradation: Performance, degradation pathways, intermediate toxicity analysis and mechanism insight

Journal

JOURNAL OF COLLOID AND INTERFACE SCIENCE
Volume 605, Issue -, Pages 727-740

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2021.07.137

Keywords

TCPP/Bi2MoO6; Visible-light photocatalysis; Tetracycline degradation; Degradation pathway; Toxicity assessment

Funding

  1. Natural Science Foundation of Zhejiang Province [LY20E080014]
  2. National Nat-ural Science Foundation of China [51708504]
  3. Science and Technology Project of Zhoushan [2017C41006, 2020C21009]

Ask authors/readers for more resources

Developing durable photocatalysts for efficient antibiotics degradation is crucial for environmental purification. In this study, hierarchical organic-inorganic TCPP/Bi2MoO6 heterojunctions were successfully synthesized and showed superior photocatalytic performance in the visible light degradation of tetracycline hydrochloride. The high catalytic activity was attributed to the interfacial interaction between TCPP and Bi2MoO6, which facilitated charge carrier separation and enhanced visible-light absorbance.
Developing durable photocatalysts with highly efficient antibiotics degradation is crucial for environment purification. Herein, tetra (4-carboxyphenyl) porphyrin (TCPP) was loaded onto the surface of Bi2MoO6 microspheres to gain hierarchical organic-inorganic TCPP/Bi2MoO6 (TCPP/BMO) heterojunctions via a facile impregnation strategy. The catalytic properties of these catalysts were comprehensively investigated through the photodegradation of tetracycline hydrochloride (TC) under visible light. Among all the TCPP/BMO heterojunctions, the highest photodegradation rate constant (0.0278 min(-1)) was achieved with 0.25 wt% TCPP (TCPP/BMO-2), which was approximately 1.15 folds greater than that of pristine Bi2MoO6 and far superior to pure TCPP. The extremely high photocatalytic performance is attributed to the interfacial interaction between TCPP and Bi2MoO6, which favors the efficient separation of charge carriers and the enhancement of visible-light absorbance. TCPP/BMO-2 possesses high mineralization capability and good recycling performance. Photo-induced center dot O-2(-), h(+), and center dot OH were mainly responsible for the degradation of TC. The degradation pathways of TC and toxicity of degradation intermediates were analyzed based on the intermediates detected by the high performance liquid chromatography mass spectrometer (HPLC-MS) and the toxicity assessment by the quantitative structure-activity relationship (QSAR) prediction. A possible photocatalytic mechanism over TCPP/BMO is proposed. This work offers an insight in developing the porphyrin-based organic-inorganic heterojunctions for effectively remedying pharmaceutical wastewater. (C) 2021 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available