4.1 Article

Predicted Cardiac Functional Responses to Renal Actions of SGLT2i in the DAPACARD Trial Population: A Mathematical Modeling Analysis

Journal

JOURNAL OF CLINICAL PHARMACOLOGY
Volume 62, Issue 4, Pages 541-554

Publisher

WILEY
DOI: 10.1002/jcph.1987

Keywords

cardiorenal modeling; dapagliflozin; global longitudinal strain; HFrEF; myocardial efficiency; SGLT2i

Funding

  1. AstraZeneca Pharmaceuticals

Ask authors/readers for more resources

Sodium-glucose cotransporter-2 inhibitors (SGLT2is) have been shown to reduce the risk of worsening heart failure and improve myocardial efficiency. This study used virtual modeling to simulate cardiac responses and confirmed the positive effects of SGLT2is on cardiac function.
Sodium-glucose cotransporter-2 inhibitors (SGLT2is) have been shown to reduce the risk of worsening heart failure (HF) in subjects with HF and a reduced ejection fraction (HFrEF) in multiple clinical trials. The DAPACARD clinical trial was conducted to examine the effects of dapagliflozin on cardiac substrate uptake, myocardial efficiency, and myocardial contractile work in subjects with type 2 diabetes mellitus. As a complement to the clinical study, a mechanistic mathematical model of cardiorenal physiology was used to quantify the influence of established natriuretic/diuretic effects of SGLT2i on cardiac function (myocardial efficiency and global longitudinal strain). Virtual participants reflecting the participant-level characteristics in the DAPACARD trial were produced by varying model parameters over physiologically plausible ranges. A second virtual population was generated by inducing a state of HFrEF in the DAPACARD virtual participants with type 2 diabetes mellitus for comparison. Cardiac responses to placebo and SGLT2i were simulated over 42 days. Cardiac hemodynamic improvements were predicted in DAPACARD-HFrEF virtual participants but not in DAPACARD virtual participants. In particular, the natriuresis/diuresis induced by SGLT2i improved the global longitudinal strain and myocardial efficiency in DAPACARD-HFrEF virtual participants within the first 14 days (change from baseline: global longitudinal strain, -0.95%; and myocardial efficiency, 0.34%), whereas the global longitudinal strain and myocardial efficiency in DAPACARD virtual participants were slightly worse (change from baseline: global longitudinal strain, 0.35%; and myocardial efficiency: -0.01%). The results of the DAPACARD virtual participants modeling were in line with the clinical data but do not preclude additional effects from other mechanisms of SGLT2i.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available