4.7 Article

On the anomalous homogeneity of hydrogen-disordered ice and its origin

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 155, Issue 16, Pages -

Publisher

AIP Publishing
DOI: 10.1063/5.0065215

Keywords

-

Funding

  1. JSPS KAKENHI [20H05272, 21H01047]
  2. Grants-in-Aid for Scientific Research [20H05272, 21H01047] Funding Source: KAKEN

Ask authors/readers for more resources

This study explains why, despite the wide distribution of pair interaction energy of hydrogen-bonded dimers, the binding energies of water molecules remain homogeneous, illustrating the impact of ice rules on intermolecular interactions.
Pauling's successful estimation of the residual entropy of hydrogen-disordered ice was based on the homogeneity of the binding energy of individual water molecules in ice. However, it has not been explained why the binding energies are homogeneous although the pair interaction energy of hydrogen-bonded dimers distributes widely. Here, we provide a rationale for this phenomenon. The topological constraints imposed by the ice rules, in which water molecules form directed cyclic paths of hydrogen bonds, cancel out the variability of local interactions. We also show that the cancellation mechanism does not work due to some imperfect cyclic paths on the surface of ice. Such water molecules do not enjoy homogeneity in the bulk state and suffer from a wide spectrum in the binding energy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available