4.7 Article

Omicron Variant (B.1.1.529): Infectivity, Vaccine Breakthrough, and Antibody Resistance

Journal

JOURNAL OF CHEMICAL INFORMATION AND MODELING
Volume 62, Issue 2, Pages 412-422

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jcim.1c01451

Keywords

-

Funding

  1. NIH [GM126189]
  2. NSF [DMS-2052983, DMS-1761320, IIS-1900473]
  3. NASA [80NSSC21M0023]
  4. Michigan Economic Development Corporation
  5. MSU Foundation
  6. Bristol-Myers Squibb
  7. Pfizer

Ask authors/readers for more resources

The Omicron variant of the SARS-CoV-2 virus has caused global panic due to its high infectivity and ability to escape vaccines. A comprehensive analysis using an artificial intelligence model and antibody structure analysis reveals that Omicron may be over 10 times more contagious than the original virus and has an 88% likelihood of vaccine escape. This study highlights the importance of developing mutation-proof vaccines and antibodies.
The latest severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant Omicron (B.1.1.529) has ushered panic responses around the world due to its contagious and vaccine escape mutations. The essential infectivity and antibody resistance of the SARS-CoV-2 variant are determined by its mutations on the spike (S) protein receptor-binding domain (RBD). However, a complete experimental evaluation of Omicron might take weeks or even months. Here, we present a comprehensive quantitative analysis of Omicron's infectivity, vaccine breakthrough, and antibody resistance. An artificial intelligence (AI) model, which has been trained with tens of thousands of experimental data and extensively validated by experimental results on SARS-CoV-2, reveals that Omicron may be over 10 times more contagious than the original virus or about 2.8 times as infectious as the Delta variant. On the basis of 185 three-dimensional (3D) structures of antibody-RBD complexes, we unveil that Omicron may have an 88% likelihood to escape current vaccines. The U.S. Food and Drug Administration (FDA)-approved monoclonal antibodies (mAbs) from Eli Lilly may be seriously compromised. Omicron may also diminish the efficacy of mAbs from AstraZeneca, Regeneron mAb cocktail, Celltrion, and Rockefeller University. However, its impacts on GlaxoSmithKline's sotrovimab appear to be mild. Our work calls for new strategies to develop the next generation mutation-proof SARS-CoV-2 vaccines and antibodies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available