4.5 Article

Scalable Video Streaming With Helper Nodes Using Random Linear Network Coding

Journal

IEEE-ACM TRANSACTIONS ON NETWORKING
Volume 24, Issue 3, Pages 1574-1587

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TNET.2015.2427161

Keywords

Inter-layer coding; intra-layer coding; multi-layer video; salable video coding; streaming; video-on-demand (VoD)

Funding

  1. NSF [CNS 149860, CNS 1461932, CNS 1460971, CNS 1439672, CNS 1301774, ECCS 1231461, ECCS 1128209, CNS 1138963]

Ask authors/readers for more resources

Video streaming generates a substantial fraction of the traffic on the Internet. The demands of video streaming also increase the workload on the video server, which in turn leads to substantial slowdowns. In order to resolve the slowdown problem, and to provide a scalable and robust infrastructure to support on-demand streaming, helper-assisted video-on-demand (VoD) systems have been introduced. In this architecture, helper nodes, which are micro-servers with limited storage and bandwidth resources, download and store the user-requested videos from a central server to decrease the load on the central server. Multi-layer videos, in which a video is divided into different layers, can also be used to improve the scalability of the system. In this paper, we study the problem of utilizing the helper nodes to minimize the pressure on the central servers. We formulate the problem as a linear programming using joint inter-and intra-layer network coding. Our solution can also be implemented in a distributed manner. We show how our method can be extended to the case of wireless live streaming, in which a set of videos is broadcasted. Moreover, we extend the proposed method to the case of unreliable connections. We carefully study the convergence and the gain of our distributed approach.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available