4.6 Article

Oligomerization of DNA replication regulatory protein RADX is essential to maintain replication fork stability

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 298, Issue 3, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.jbc.2022.101672

Keywords

-

Funding

  1. National Institutes of Health [R01GM116616]

Ask authors/readers for more resources

This study demonstrates that RADX acts as a homooligomer to control replication fork stability. It protects nascent DNA strands from degradation by binding to both ssDNA and RAD51. Mutations in a critical region prevent RADX from oligomerizing and functioning in cells, but adding a heterologous dimerization domain restores its ability to regulate replication.
Genome integrity requires complete and accurate DNA replication once per cell division cycle. Replication stress poses obstacles to this process that must be overcome to prevent replication fork collapse. An important regulator of replication fork stability is the RAD51 protein, which promotes replication fork reversal and protects nascent DNA strands from nuclease mediated degradation. Many regulatory proteins control these RAD51 activities, including RADX, which binds both ssDNA and RAD51 at replication forks to ensure that fork reversal is confined to stalled forks. Many ssDNA-binding proteins function as hetero-or homo-oligomers. In this study, we addressed whether this is also the case for RADX. Using biochemical and genetic approaches, we found that RADX acts as a homooligomer to control replication fork stability. RADX oligomerizes using at least two different interaction surfaces, including one mapped to a C-terminal region. We demonstrate that mutations in this region prevent oligomerization and prevent RADX function in cells, and that addition of a heterologous dimerization domain to the oligomerization mutants restored their ability to regulate replication. Taken together, our results demonstrate that like many ssDNA-binding proteins, oligomerization is essential for RADX-mediated regulation of genome stability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available