4.6 Article

Structural basis for anti-CRISPR repression mediated by bacterial operon proteins Aca1 and Aca2

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 297, Issue 6, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.jbc.2021.101357

Keywords

-

Funding

  1. National Key R&D Program of China [2018YFC1004500]
  2. Shenzhen Government `Peacock Plan' [Y01226136]
  3. Thousand Young Talents Program
  4. Chinese National Natural Science Foundation of China [31900435]
  5. Guangdong Science and Technology Department [2020B1212060018, 2020B1212030004]

Ask authors/readers for more resources

The study reveals that phages have evolved Aca1 and Aca2 proteins to inhibit host CRISPR-Cas systems by binding to acr-aca promoters. The structural basis for the repression roles of Aca proteins is elucidated, shedding light on the repression roles of other Aca family proteins and the autoregulation roles of acr-aca operons.
It has been shown that phages have evolved anti-CRISPR (Acr) proteins to inhibit host CRISPR-Cas systems. Most acr genes are located upstream of anti-CRISPR-associated (aca) genes, which is instrumental for identifying these acr genes. Thus far, eight Aca families (Aca1-Aca8) have been identified, all proteins of which share low sequence homology and bind to different target DNA sequences. Recently, Aca1 and Aca2 proteins were discovered to function as repressors by binding to acr-aca promoters, thus implying a potential anti-antiCRISPR mechanism. However, the structural basis for the repression roles of Aca proteins is still unknown. Here, we elucidated apo-structures of Aca1 and Aca2 proteins and their complex structures with their cognate operator DNA in two model systems, the Pseudomonas phage JBD30 and the Pecto-bacterium carotovorum template phage ZF40. In combination with biochemical and cellular assays, our study unveils dimerization and DNA-recognition mechanisms of Aca1 and Aca2 family proteins, thus revealing the molecular basis for Aca1-and Aca2-mediated anti-CRISPR repression. Our results also shed light on understanding the repression roles of other Aca family proteins and autoregulation roles of acr-aca operons.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available