4.7 Article

Warming alters juvenile carp effects on macrophytes resulting in a shift to turbid conditions in freshwater mesocosms

Journal

JOURNAL OF APPLIED ECOLOGY
Volume 59, Issue 1, Pages 165-175

Publisher

WILEY
DOI: 10.1111/1365-2664.14040

Keywords

alternative stable state; aquatic plant; benthivorous fish; climate change; phenology; regime shift; shallow lakes; trophic cascade

Funding

  1. National Natural Science Foundation of China [32001158, 31872687]
  2. International Cooperation Project of the Chinese Academy of Sciences [152342KYSB20190025]
  3. National Key R&D Program of China [2018YFD0900904]
  4. China Postdoctoral Science Foundation [2019M652734]

Ask authors/readers for more resources

The study provides experimental evidence for a warming-induced regime shift from clear-water conditions dominated by submerged or floating/floating-leaved macrophytes to a turbid state in shallow aquatic ecosystems. It emphasizes the importance of reducing benthivorous fish abundance for the management of shallow lakes under global climate change.
Multiple stressors such as climate change and eutrophication are responsible for the global decline in macrophytes in lakes. The loss of this key component can result in turbid conditions and a loss of important ecosystem functions and services, particularly in shallow lakes. Benthivorous fish, which can increase in abundance during eutrophication, can adversely affect macrophytes through physical disturbance, cascading effects on turbidity, suspended and attached algae (phytoplankton and periphyton) and direct consumption. However, whether warming amplifies their effects on macrophytes and can trigger regime shifts remains unexplored. Here, we tested the single and combined effects of warmer water (+4.5 degrees C) and the widespread benthivorous juvenile common carp Cyprinus carpio on two different types of aquatic macrophytes in 24 mesocosms (2,500 L each). We monitored phytoplankton, periphyton, turbidity and the abundance of the submerged curly leafed pondweed Potamogeton crispus and the floating-leaved water chestnut Trapa bispinosa during their growing season. These species dominated successively in spring and summer. Warming alone advanced the growing season of P. crispus by 17 days. Juvenile carp decreased the abundance of the more palatable P. crispus, but promoted the abundance of T. bispinosa, supporting an ecosystem shift to a dominance of floating-leaved macrophytes. Fish also substantially increased water turbidity and the biomass of phytoplankton and periphyton. Warming amplified juvenile carp effects on turbidity and submerged macrophytes, but also decreased the abundance of floating-leaved macrophytes leading to an overall macrophyte decline and increase in water turbidity. Synthesis and applications. Our study provides the first experimental evidence for a warming-induced regime shift from clear-water conditions dominated by submerged or floating/floating-leaved macrophytes to a turbid state in shallow aquatic ecosystems. The regime shift was triggered by the impacts of warming on benthivorous fish (juvenile common carp) rather than on macrophytes. Lowering nutrient loading and other measures to reduce the abundance of benthivorous fish (e.g. fish removal and piscivorous fish restocking) thus may become increasingly important for the management of shallow lakes under global climate change.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available