4.7 Article

Weight loss and high-protein, high-fiber diet consumption impact blood metabolite profiles, body composition, voluntary physical activity, fecal microbiota, and fecal metabolites of adult dogs

Journal

JOURNAL OF ANIMAL SCIENCE
Volume 100, Issue 2, Pages -

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1093/jas/skab379

Keywords

caloric restriction; canine nutrition; dietary fiber; high-protein diet; weight loss

Funding

  1. Perfect Companion Group Co., Ltd., Thailand

Ask authors/readers for more resources

The study found that restricted feeding of a high-protein, high-fiber diet and weight loss can help overweight dogs reduce fat mass, decrease levels of inflammatory markers and triglycerides, and modulate fecal bacterial populations and activity.
Lay Summary Canine obesity is associated with reduced lifespan and metabolic dysfunction, but dietary intervention may aid in its management. This study aimed to determine the effects of restricted feeding of a high-protein, high-fiber (HPHF) diet and weight loss on body composition, physical activity, blood metabolites, and fecal bacteria and metabolites of overweight dogs. Twelve overweight dogs were fed a HPHF diet during a 4-wk baseline to maintain body weight and then fed to lose weight for 24 wk. Body composition, blood samples, voluntary physical activity, and fresh fecal samples were measured over time. After 24 wk, dogs lost over 30% of their initial body weight and had 1.4% weight loss per week. As expected, serum triglycerides, leptin, insulin, C-reactive protein, and interleukin-6 decreased with weight loss. The relative abundances of 4 bacterial phyla and over 30 bacterial genera were altered with weight loss. Fecal ammonia and secondary bile acid concentrations decreased, whereas fecal valerate concentrations increased with weight loss. Several correlations between fecal bacteria and physiological parameters were identified. Our results suggest that a HPHF diet and weight loss promote fat mass loss, reduce inflammatory marker and triglyceride concentrations, and modulate fecal bacterial populations and activity in overweight dogs. This study demonstrates that restricted feeding of a high-protein, high-fiber diet and weight loss promotes fat mass loss, reduces inflammatory marker and triglyceride concentrations, and modulates fecal bacterial populations and activity in overweight dogs. Canine obesity is associated with reduced lifespan and metabolic dysfunction, but can be managed by dietary intervention. This study aimed to determine the effects of restricted feeding of a high-protein, high-fiber (HPHF) diet and weight loss on body composition, physical activity, blood metabolites, and fecal microbiota and metabolites of overweight dogs. Twelve spayed female dogs (age: 5.5 +/- 1.1 yr; body weight [BW]: 14.8 +/- 2.0 kg, body condition score [BCS]: 7.9 +/- 0.8) were fed a HPHF diet during a 4-wk baseline phase to maintain BW. After baseline (week 0), dogs were first fed 80% of baseline intake and then adjusted to target 1.5% weekly weight loss for 24 wk. Body composition using dual-energy x-ray absorptiometry and blood samples (weeks 0, 6, 12, 18, and 24), voluntary physical activity (weeks 0, 7, 15, and 23), and fresh fecal samples for microbiota and metabolite analysis (weeks 0, 4, 8, 12, 16, 20, and 24) were measured over time. Microbiota data were analyzed using QIIME 2. All data were analyzed statistically over time using SAS 9.4. After 24 wk, dogs lost 31.2% of initial BW and had 1.43 +/- 0.73% weight loss per week. BCS decreased (P < 0.0001) by 2.7 units, fat mass decreased (P < 0.0001) by 3.1 kg, and fat percentage decreased (P < 0.0001) by 11.7% with weight loss. Many serum metabolites and hormones were altered, with triglycerides, leptin, insulin, C-reactive protein, and interleukin-6 decreasing (P < 0.05) with weight loss. Relative abundances of fecal Bifidobacterium, Coriobacteriaceae UCG-002, undefined Muribaculaceae, Allobaculum, Eubacterium, Lachnospira, Negativivibacillus, Ruminococcus gauvreauii group, uncultured Erysipelotrichaceae, and Parasutterella increased (P < 0.05), whereas Prevotellaceae Ga6A1 group, Catenibacterium, Erysipelatoclostridium, Fusobacterium, Holdemanella, Lachnoclostridium, Lactobacillus, Megamonas, Peptoclostridium, Ruminococcus gnavus group, and Streptococcus decreased (P < 0.01) with weight loss. Despite the number of significant changes, a state of dysbiosis was not observed in overweight dogs. Fecal ammonia and secondary bile acids decreased, whereas fecal valerate increased with weight loss. Several correlations between gut microbial taxa and biological parameters were observed. Our results suggest that restricted feeding of a HPHF diet and weight loss promotes fat mass loss, minimizes lean mass loss, reduces inflammatory marker and triglyceride concentrations, and modulates fecal microbiota phylogeny and activity in overweight dogs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available