4.7 Article

Co-pyrolysis of lignocellulosic biomass and plastics: A comprehensive study on pyrolysis kinetics and characteristics

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.jaap.2022.105464

Keywords

Co-pyrolysis; Kinetic triplet; Biomass; Plastics; Fixed-bed reactor

Funding

  1. National Research Foundation of Korea (NRF) - Korea government (MSIT) [2020R1A2B5B01097547]
  2. Engineering Research Center of Excellence Program of the Korea Ministry of Science, ICT & Future Planning (MSIP)/National Research Foundation of Korea (NRF) [NRF-2021R1A5A6002853]
  3. National Research Foundation of Korea [2020R1A2B5B01097547] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

This study investigated the kinetic behaviors and product characteristic changes during the co-pyrolysis of biomass with plastics, revealing synergistic effects in different feedstock combinations, which have positive implications for enhancing oil yield and quality.
Co-pyrolysis of biomass with plastics is an interesting research trend in improving both the yield and quality of oil products toward taking advantage of flexible material resources and sustainable fuel development. This study investigated the kinetic behaviors using thermogravimetric analysis and pyrolysis characterization for the co pyrolysis of biomass (bamboo and oak wood) with plastics (polypropylene [PP] and polystyrene [PS]) in a fixed-bed reactor. The kinetic triplet for feedstocks was determined using the isoconversional method, compensation effect, and master plot method. The addition of 20 wt% plastics into biomass decreased the activation energy, with the most distinct positive synergistic effect for the bamboo/PS blend. In addition, the effect of co-pyrolysis temperature and biomass/plastic ratio on pyrolysis characteristics was investigated. Through biomass pyrolysis and biomass/plastic co-pyrolysis, the positive changes in distributions and physical chemical properties of the products (i.e., char, oil, and gas) were observed using various analytical methods. Especially in the case of biomass/PS blends, the synergistic effect of co-pyrolysis was shown due to the difference in the actual and theoretical yields of the products. The liquid yields of the co-pyrolysis were 50.95, 50.17, 55.15, and 56.16 wt% for bamboo/PP, bamboo/PS, oak wood/PP, and oak wood/PS, respectively. The highest HHV of 28.22 MJ/kg was obtained for oil derived from the co-pyrolysis of bamboo/PS. Furthermore, co-pyrolysis chars have high HHVs in the range of 30.73-32.41 MJ/kg, suggesting that they can be used as solid fuels.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available