4.7 Review

Current state of high voltage olivine structured LiMPO4 cathode materials for energy storage applications: A review

Journal

JOURNAL OF ALLOYS AND COMPOUNDS
Volume 882, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2021.160774

Keywords

Lithium-ion battery; Olivine; High voltage cathode; LiNiPO4; LiCoPO4

Funding

  1. Ministry of Education and Science of the Republic of Kazakhstan [AP08855889, AP09259764]
  2. Development of highly sensitive MOS based nano-film gas sensors from Nazarbayev University [021220CRP0122]

Ask authors/readers for more resources

This paper systematically reviews the recent progress of olivine structured cathode materials LiCoPO4 and LiNiPO4 and their potential applications in lithium ion batteries. Various strategies such as particle size manipulation, surface modification, and structure doping can improve the performance of these materials.
Continuous evolution of electrode materials still has not correspond today's energy storage system necessity and limits their application range. Numerous approaches are proposed to improve lithium ion batteries (LIBs) energy density including advancement of positive electrode materials. Olivine structured cathodes as LiCoPO4 and LiNiPO4 are excellent candidates due to their working potentials of exceeding 5.0 V vs. Li+/Li. Despite the efforts, these materials still have several intrinsic problems which demand various strategies to overcome. The paper systematically reviews the recent progress of these cathode materials. The approaches based on particle size manipulation via synthesis route variation and carbon addition, surface modification by coating with electron conducting carbon layer, and doping the structure with other metal ions were discussed and analyzed as the most impactful towards achieving competitive performance. Furthermore, the computational technique was discussed due to its importance in understanding and designing the materials from atomic to microscale levels. The potential applications of these cathodes in a new generation of all-solid-state Li-ion and aqueous batteries were described. (C) 2021 The Author(s). Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available