4.7 Article

Synergistic S-Scheme mechanism insights of g-C3N4 and rGO combined ZnO-Ag heterostructure nanocomposite for efficient photocatalytic and anticancer activities

Journal

JOURNAL OF ALLOYS AND COMPOUNDS
Volume 906, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2022.164255

Keywords

G-C3N4; rGO; ZnO-Ag; Nanocomposite; Photocatalysts; Anticancer; Mixed dye degradation

Funding

  1. Priority Research Centers Program through the National Research Foundation of Korea (NRF) - Ministry of Education [2014R1A6A1031189, RSP-2021/55]
  2. King Saud University, Riyadh, Saudi Arabia

Ask authors/readers for more resources

In this study, a graphene-enhanced g-C3N4/ZnO-Ag composite photocatalyst was prepared and characterized. The composite showed excellent photocatalytic activity and cytotoxicity, making it a potential candidate for dye pollution treatment and cancer prevention.
The g-C(3)N(4/)rGO/ZnO-Ag (GCRZA) composite photocatalyst (PC) prepared by the facile hydrothermal method was effectively studied. The structural, morphological and optical, properties of as-synthesized materials were characterized by various characterization techniques. Photocatalytic activity of the as-pre-pared composite was examined using rhodamine B and methylene blue mixed (RhB+MB) aqueous dye under UV-visible light irradiation for 100 min. The GCRZA composite displayed a better photocatalytic performance against MB dye (90.04%) and RhB dye (83.45%) degradation performance. Moreover, the GCRZA composite PCs exhibited higher photocatalytic activity than pristine g-C3N4. The ultimate photo-catalytic property was attained by implementating of g-C3N4/rGO in ZnO-Ag heterostructure, which could effectively decrease the optical bandgap and high visible-light absorption ability with suppressed e/h+ recombination rate. After the five consecutive photocatalytic recycles, the GCRZA composite PC showed good stability without structural changes. Furthermore, the IC50 values showed that GCRZA nanocomposite (NC) has a higher cytotoxicity effect than g-C3N4/ZnO-Ag, g-C3N4/rGO and g-C3N4 against both HeLa and MCF-7 cell lines. As a result, this combination of nanocomposite has proven to exhibit higher photocatalytic and anticancer activity. Eventually, it may prove to be an effective tool for eradicating dye pollution from wastewater, and a way to prevent cancer mediated diseases in the cosmetics and pharmaceutical industries. (c) 2022 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available