4.4 Article

The Inverse Method for a Childhood Infectious Disease Model with Its Application to Pre-vaccination and Post-vaccination Measles Data

Journal

BULLETIN OF MATHEMATICAL BIOLOGY
Volume 77, Issue 12, Pages 2231-2263

Publisher

SPRINGER
DOI: 10.1007/s11538-015-0121-5

Keywords

Childhood infectious disease; Time-dependent transmission rate; Incidence algorithm; Prevalence algorithm; Inverse problem; Measles; Fourier transform; Sensitivity analysis; Vaccination

Ask authors/readers for more resources

In this paper, we improve the classic SEIR model by separating the juvenile group and the adult group to better describe the dynamics of childhood infectious diseases. We perform stability analysis to study the asymptotic dynamics of the new model, and perform sensitivity analysis to uncover the relative importance of the parameters on infection. The transmission rate is a key parameter in controlling the spread of an infectious disease as it directly determines the disease incidence. However, it is essentially impossible to measure the transmission rate for certain infectious diseases. We introduce an inverse method for our new model, which can extract the time-dependent transmission rate from either prevalence data or incidence data in existing open databases. Pre- and post-vaccination measles data sets from Liverpool and London are applied to estimate the time-varying transmission rate. From the Fourier transform of the transmission rate of Liverpool and London, we observe two spectral peaks with frequencies 1/year and 3/year. These dominant frequencies are robust with respect to different initial values. The dominant 1/year frequency is consistent with common belief that measles is driven by seasonal factors such as environmental changes and immune system changes and the 3/year frequency indicates the superiority of school contacts in driving measles transmission over other seasonal factors. Our results show that in coastal cities, the main modulator of the transmission of measles virus, paramyxovirus, is school seasons. On the other hand, in landlocked cities, both weather and school seasons have almost the same influence on paramyxovirus transmission.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available