4.7 Article

Thermal conductivity and interfacial thermal conductivity of complex graphene nanoribbons without and with polyethylene molecules

Journal

INTERNATIONAL JOURNAL OF THERMAL SCIENCES
Volume 170, Issue -, Pages -

Publisher

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.ijthermalsci.2021.107038

Keywords

Thermal conductivity; Molecular dynamics; Graphene

Funding

  1. National Natural Science Foundation of China [11774029]

Ask authors/readers for more resources

This study investigates the thermal conductivity and interfacial thermal conductivity of complex graphene nanoribbons with various parameters and temperatures. The results show that interfacial thermal conductivity is fundamentally important for heat transport performance, with certain factors affecting the thermal and interfacial conductivity differently. Placing polyethylene molecules at the interfaces can enhance the interfacial thermal conductivity.
We investigate the thermal conductivity (TC) and interfacial TC (ITC) of complex graphene nanoribbons (GNRs) with homojunctions formed by two monolayer GNR regions (MRs) and one central multi-layer GNR region (CR), as well as the influences of the CR layer number and length, the MR length, the GNR width, and the temperature. We show that the ITC is always smaller than the TC, indicating the entire heat transport performance is fundamentally determined by the interfaces. The GNRs with the two-layer CR show the largest ITC, which is much greater than the GNRs with other CR layer numbers. With increasing the temperature and the CR length, the ITC will increase while the TC will decrease for the GNRs with arbitrary CR layer numbers. However, the TC and ITC show the oscillations around certain values with the increase of the GNR width, and the TC will increase with the increase of the length of the MR. In addition, the TC (ITC) in the left part of the complex GNR changes in the same pace as the TC (ITC) in the right counterpart, while the TC always changes in the pace opposite to the ITC in the left or right part of the complex GNR. Finally, we show that the ITC can be increased by placing polyethylene molecules at the interfaces. This research should be an important reference for understanding the heat transport mechanism and designing the thermal functional materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available