4.7 Article

Finite-time rotation-matrix-based tracking control for autonomous underwater vehicle with input saturation and actuator faults

Journal

Publisher

WILEY
DOI: 10.1002/rnc.5915

Keywords

actuator faults; autonomous underwater vehicle; input saturation; rotation matrix

Ask authors/readers for more resources

This article addresses the finite-time global trajectory tracking control problem of AUV in the presence of various constraints and issues. By using a rotation matrix to describe AUV orientation and introducing a dead zone model to solve actuator problems, along with utilizing the minimum learning parameter technology to handle dynamic nonlinearity, a sliding mode control scheme is proposed. The effectiveness of the proposed control scheme is evaluated through numerical experiments.
This article tackles the finite-time global trajectory tracking control problem of the autonomous underwater vehicle (AUV) in presence of input saturation constraints, actuator faults, unknown dynamics, and external disturbances. First, we describe the orientation of the AUV by rotation matrix instead of classical Euler angle or unit quaternion such that the AUV's dynamics could be globally formulated without singularity and unwinding phenomenon. After that, a smooth dead zone-based model is introduced here to linearize the actuator model, leaving that the adaptive laws could be suitable for the solution of input saturation and actuator faults. Considering that the difficulty of model dynamic acquirement, together with the complicity of rotation-matrix-based representation, would trouble deployment of the controller. The minimum learning parameter technology is thereby utilized to approximated the dynamic nonlinearity of the AUV. On the basis of these, a rotation-matrix-based sliding mode control scheme is technically proposed. It is proved that the tracking errors can be stabilized to a small neighborhood of origin within a settling time. Finally, several set numerical experiments are conducted to assess the effectiveness and show the advantages of the proposed control scheme.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available