4.7 Review

Neuroinflammation as a Key Driver of Secondary Neurodegeneration Following Stroke?

Journal

Publisher

MDPI
DOI: 10.3390/ijms222313101

Keywords

stroke; cerebral ischaemia; dementia; inflammation; microglia; astrocytes; anti-inflammatories; neuroprotection; therapeutic

Funding

  1. Neurosurgical Research Foundation
  2. Perpetual
  3. IBRO-APRC Travel & Short Stay Grant
  4. International Society for Neurochemistry Career Development Grant

Ask authors/readers for more resources

Ischaemic stroke is a leading cause of death and disability worldwide, affecting over 17 million people each year. Neuroinflammation and immune mediators play a crucial role in acute and long-term neuronal tissue damage and healing following stroke, with specific spikes in neuroinflammation observed in sites of secondary neurodegeneration. However, the exact mechanisms driving stroke-induced neuroinflammation remain poorly understood, leading to a lack of effectiveness in current anti-inflammatory treatments.
Ischaemic stroke involves the rapid onset of focal neurological dysfunction, most commonly due to an arterial blockage in a specific region of the brain. Stroke is a leading cause of death and common cause of disability, with over 17 million people worldwide suffering from a stroke each year. It is now well-documented that neuroinflammation and immune mediators play a key role in acute and long-term neuronal tissue damage and healing, not only in the infarct core but also in distal regions. Importantly, in these distal regions, termed sites of secondary neurodegeneration (SND), spikes in neuroinflammation may be seen sometime after the initial stroke onset, but prior to the presence of the neuronal tissue damage within these regions. However, it is key to acknowledge that, despite the mounting information describing neuroinflammation following ischaemic stroke, the exact mechanisms whereby inflammatory cells and their mediators drive stroke-induced neuroinflammation are still not fully understood. As a result, current anti-inflammatory treatments have failed to show efficacy in clinical trials. In this review we discuss the complexities of post-stroke neuroinflammation, specifically how it affects neuronal tissue and post-stroke outcome acutely, chronically, and in sites of SND. We then discuss current and previously assessed anti-inflammatory therapies, with a particular focus on how failed anti-inflammatories may be repurposed to target SND-associated neuroinflammation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available