4.7 Review

Evolution of the Early Spliceosomal Complex-From Constitutive to Regulated Splicing

Journal

Publisher

MDPI
DOI: 10.3390/ijms222212444

Keywords

splicing; spliceosome; E-complex; Prp2; 5 ' splicing site; exon-intron junction; fission yeast; U2AF65

Funding

  1. Spanish Ministerio de Economia y Competitividad (MINECO), PLAN E and Feder
  2. Unidad de Excelencia Maria de Maeztu [BFU2018-PGC2018-097248-B-I00, CEX2018-000792-M]

Ask authors/readers for more resources

Pre-mRNA splicing is a crucial process in gene expression regulation in eukaryotes, involving the formation of the E-complex and common ancestral mechanisms in different organisms.
Pre-mRNA splicing is a major process in the regulated expression of genes in eukaryotes, and alternative splicing is used to generate different proteins from the same coding gene. Splicing is a catalytic process that removes introns and ligates exons to create the RNA sequence that codifies the final protein. While this is achieved in an autocatalytic process in ancestral group II introns in prokaryotes, the spliceosome has evolved during eukaryogenesis to assist in this process and to finally provide the opportunity for intron-specific splicing. In the early stage of splicing, the RNA 5 & PRIME; and 3 & PRIME; splice sites must be brought within proximity to correctly assemble the active spliceosome and perform the excision and ligation reactions. The assembly of this first complex, termed E-complex, is currently the least understood process. We focused in this review on the formation of the E-complex and compared its composition and function in three different organisms. We highlight the common ancestral mechanisms in S. cerevisiae, S. pombe, and mammals and conclude with a unifying model for intron definition in constitutive and regulated co-transcriptional splicing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available