4.7 Article

CNPase, a 2′,3′-Cyclic-nucleotide 3′-phosphodiesterase, as a Therapeutic Target to Attenuate Cardiac Hypertrophy by Enhancing Mitochondrial Energy Production

Journal

Publisher

MDPI
DOI: 10.3390/ijms221910806

Keywords

CNPase; heart failure animal model; zebrafish; CRISPR-Cas9; mitochondrial energy production

Funding

  1. Science and Technology Innovation Project of Foshan [2017IT100162]
  2. Guangdong Basic and Applied Basic Research Foundation [2019A1515110544]

Ask authors/readers for more resources

This study reveals the role of CNPase in the pathophysiological process of heart failure, demonstrating its protective effects on cardiac health through zebrafish and rat models. By modulating CNPase activity, it can mitigate cardiac hypertrophy and fibrosis, maintain mitochondrial function, and provide new therapeutic approaches for treating heart failure.
Heart failure is the end-stage of all cardiovascular diseases with a similar to 25% 5-year survival rate, and insufficient mitochondrial energy production to meet myocardial demand is the hallmark of heart failure. Mitochondrial components involved in the regulation of ATP production remain to be fully elucidated. Recently, roles of 2',3'-cyclic nucleotide-3'-phosphodiesterase (CNPase) in the pathophysiological processes of heart diseases have emerged, implicated by evidence that mitochondrial CNPase proteins are associated with mitochondrial integrity under metabolic stress. In this study, a zebrafish heart failure model was established, by employing antisense morpholino oligonucleotides and the CRISPR-Cas9 gene-editing system, which recapitulates heart failure phenotypes including heart dysfunction, pericardial edema, ventricular enlargement, bradycardia, and premature death. The translational implications of CNPase in the pathophysiological process of heart failure were tested in a pressure overload-induced heart hypertrophy model, which was carried out in rats through transverse abdominal aorta constriction (TAAC). AAV9-mediated myocardial delivery of CNPase mitigated the hypertrophic response through the specific hydrolysis of 2'-3'-cyclic nucleotides, supported by the decrease of cardiac hypertrophy and fibrosis, the integrity of mitochondrial ultrastructure, and indicators of heart contractility in the AAV9-TAAC group. Finally, the biometrics of a mitochondrial respiration assay carried out on a Seahorse cellular energy analyzer demonstrated that CNPase protects mitochondrial respiration and ATP production from AngII-induced metabolic stress. In summary, this study provides mechanistic insights into CNPase-2',3'-cyclic nucleotide metabolism that protects the heart from energy starvation and suggests novel therapeutic approaches to treat heart failure by targeting CNPase activity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available