4.7 Article

New N-Substituted-1,2,4-triazole Derivatives of Pyrrolo[3,4-d]pyridazinone with Significant Anti-Inflammatory Activity-Design, Synthesis and Complementary In Vitro, Computational and Spectroscopic Studies

Journal

Publisher

MDPI
DOI: 10.3390/ijms222011235

Keywords

cyclooxygenase; & nbsp;1,2,4-triazole; & nbsp;pyridazinone; SAR; & nbsp;molecular docking; & nbsp;anti-inflammatory activity; & nbsp;antioxidant activity; & nbsp;ADME

Funding

  1. Ministry of Health subvention [SUB.D070.21.094]
  2. IT Simple system of Wroclaw Medical University

Ask authors/readers for more resources

This study synthesized novel N-substituted-1,2,4-triazole-based derivatives of pyrrolo[3,4-d]pyridazinone, some of which showed significant COX-2 inhibitory activity and selectivity, while also helping reduce oxidative stress-induced cell damage in vitro experiments.
Regarding that the chronic use of commonly available non-steroidal and anti-inflammatory drugs (NSAIDs) is often restricted by their adverse effects, there is still a current need to search for and develop new, safe and effective anti-inflammatory agents. As a continuation of our previous work, we designed and synthesized a series of 18 novel N-substituted-1,2,4-triazole-based derivatives of pyrrolo[3,4-d]pyridazinone 4a-c-9a-c. The target compounds were afforded via a convenient way of synthesis, with good yields. The executed cell viability assay revealed that molecules 4a-7a, 9a, 4b-7b, 4c-7c do not exert a cytotoxic effect and were qualified for further investigations. According to the performed in vitro test, compounds 4a-7a, 9a, 4b, 7b, 4c show significant cyclooxygenase-2 (COX-2) inhibitory activity and a promising COX-2/COX-1 selectivity ratio. These findings are supported by a molecular docking study which demonstrates that new derivatives take position in the active site of COX-2 very similar to Meloxicam. Moreover, in the carried out in vitro evaluation within cells, the title molecules increase the viability of cells pre-incubated with the pro-inflammatory lipopolysaccharide and reduce the level of reactive oxygen and nitrogen species (RONS) in induced oxidative stress. The spectroscopic and molecular modeling study discloses that new compounds bind favorably to site II(m) of bovine serum albumin. Finally, we have also performed some in silico pharmacokinetic and drug-likeness predictions. Taking all of the results into consideration, the molecules belonging to series a (4a-7a, 9a) show the most promising biological profile.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available