4.7 Article

Novel Strategy of Proxalutamide for the Treatment of Prostate Cancer through Coordinated Blockade of Lipogenesis and Androgen Receptor Axis

Journal

Publisher

MDPI
DOI: 10.3390/ijms222413222

Keywords

proxalutamide; prostate cancer; androgen receptor; lipidomics; lipogenesis

Funding

  1. Fundamental Research Funds for the Central Universities [2632020ZD16]
  2. National Natural Science Foundation of China [81703608]
  3. Jiangsu Province Natural Science Project [BK20170741]
  4. Leading Technology Foundation Research Project of Jiangsu Province [BK20192005]
  5. Sanming Project of Medicine in Shenzhen [SZSM201801060]
  6. Double First-Class University project [CPU2018GF01]

Ask authors/readers for more resources

This study evaluated the potential efficacy of proxalutamide as a novel therapy strategy for prostate cancer. Proxalutamide demonstrated superior inhibitory effects on proliferation and migration of PCa cells, induced apoptosis, reduced lipid accumulation, inhibited de novo lipogenesis, and decreased AR expression. By co-targeting the AR axis and endogenous adipogenesis, proxalutamide offers a promising approach to combat drug resistance and prolong the clinical service life of AR-targeted therapy for PCa.
Objective: Prostate cancer (PCa) is the most common malignant tumor diagnosed in men in developed countries. In developing countries, the PCa morbidity and mortality rates are also increasing rapidly. Since androgen receptor (AR) is a key driver and plays a critical role in the regulation of PCa development, AR-targeted agents provide a key component of current therapy regimens. However, even new-generation AR antagonists are prone to drug resistance, and there is currently no effective strategy for overcoming advanced PCa aggressiveness, including drug-resistance progression. The aim of this study was to evaluate the potential efficacy and novel therapy strategy of proxalutamide (a newly developed AR antagonist) in PCa. Methods: Four PCa cell lines with various biological heterogeneities were utilized in this study, namely, androgen-sensitive/-insensitive with/without AR expression. Proliferation, migration and apoptosis assays in PCa cells were used to evaluate the effective therapeutic activity of proxalutamide. The changes in lipid droplet accumulation and lipidomic profiles were analyzed to determine the influence of proxalutamide on lipogenesis in PCa cells. The molecular basis of the effects of proxalutamide on lipogenesis and the AR axis was then further investigated. Results: Proxalutamide significantly inhibited the proliferation and migration of PCa cells, and its inhibitory effect was superior to that of enzalutamide (Enz, second-generation AR antagonist). Proxalutamide induced the caspase-dependent apoptosis of PCa cells. Proxalutamide significantly diminished the level of lipid droplets in PCa cells, changed the lipid profile of PCa cells and reduced the content of most lipids (especially triglycerides) in PCa cells. Proxalutamide attenuated de novo lipogenesis by inhibiting the expression of ATP citrate lyase (ACL), acetyl CoA carboxylase (ACC), fatty acid synthase (FASN) and sterol regulatory element-binding protein-1 (SREBP-1). Moreover, proxalutamide also decreased AR expression in PCa cells, and its inhibitory effect on lipogenesis did not depend on its ability to down-regulate AR expression. However, Enz had no effect on AR expression, lipid accumulation or lipid de novo synthesis in PCa cells. Conclusions: By co-targeting the AR axis and endogenous adipogenesis, a novel and promising strategy was established for proxalutamide to combat the progress of PCa. The unique effect of proxalutamide on the metabolic reprogramming of PCa provides a potential solution to overcome the resistance of current AR-targeted therapy, which will help to effectively prolong its clinical service life.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available