4.7 Review

Machine learning predictive models for acute pancreatitis: A systematic review

Journal

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.ijmedinf.2021.104641

Keywords

Acute pancreatitis; Machine learning; Prediction; Systematic review

Funding

  1. National Natural Science Foundation of China [81801970, 82070668, 82070664]

Ask authors/readers for more resources

Machine learning has shown great potential in assisting decision-making in the prediction tasks of acute pancreatitis. However, existing studies still have some deficiencies that need to be optimized and evaluated to develop high-quality machine learning models for clinical practice.
Introduction: Acute pancreatitis (AP) is a common clinical pancreatic disease. Patients with different severity levels have different clinical outcomes. With the advantages of algorithms, machine learning (ML) has gradually emerged in the field of disease prediction, assisting doctors in decision-making. Methods: A systematic review was conducted using the PubMed, Web of Science, Scopus, and Embase databases, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Publication time was limited from inception to 29 May 2021. Studies that have used ML to establish predictive tools for AP were eligible for inclusion. Quality assessment of the included studies was conducted in accordance with the IJMEDI checklist. Results: In this systematic review, 24 of 2,913 articles, with a total of 8,327 patients and 47 models, were included. The studies could be divided into five categories: 10 studies (42%) reported severity prediction; 10 studies (42%), complication prediction; 3 studies (13%), mortality prediction; 2 studies (8%), recurrence prediction; and 2 studies (8%), surgery timing prediction. ML showed great accuracy in several prediction tasks. However, most of the included studies were retrospective in nature, conducted at a single centre, based on database data, and lacked external validation. According to the IJMEDI checklist and our scoring criteria, two studies were considered to be of high quality. Most studies had an obvious bias in the quality of data preparation, validation, and deployment dimensions. Conclusion: In the prediction tasks for AP, ML has shown great potential in assisting decision-making. However, the existing studies still have some deficiencies in the process of model construction. Future studies need to optimize the deficiencies and further evaluate the comparability of the ML systems and model performance, so as to consequently develop high-quality ML-based models that can be used in clinical practice.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available