4.5 Article

Evaluating the outcomes of a single-cylinder CRDI engine operated by lemon peel oil under the influence of DTBP, rice husk nano additive and water injection

Journal

INTERNATIONAL JOURNAL OF ENGINE RESEARCH
Volume 24, Issue 2, Pages 308-323

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/14680874211047743

Keywords

Biofuel; DTBP; rice husk; lemon peel; waste to fuel

Ask authors/readers for more resources

This study investigates the usage of low viscous biofuel in CRDI engines and measures to reduce NOx emission through water injection technique. The results show that a lemon peel oil blend with rice husk and di-tert-butyl-peroxide as additives has lower NOx emissions and fuel consumption, but affects the brake thermal efficiency to some extent.
In the search for an alternative energy source with lesser pollution for transportation needs, bio-oil, a denser and viscous fuel that needs a transesterification process, have been widely considered for diesel engines. However, these problems are solved by using low viscous biofuel, but this improvement also significantly leads to increased NOx emission. Hence this present study investigates the usage of a low viscous biofuel in the CRDI engine with measures to reduce NOx emission through water injection technique. The low viscous bio-oil was used in this study along with an ignition enhancer (di-tert-butyl-peroxide), non-metallic nano additive (rice husk). They were tested in a constant speed, single-cylinder, diesel engine for various loads. Considering the brake thermal efficiency (BTE), 2% and 150 ppm were selected as the optimum value after testing five ratios (1%, 1.5%, 2%, 2.5% and 3%) of di tert butyl peroxide (DTBP) and four ratios (50, 100, 150 and 200 ppm) of rice husk (RH). The lemon peel oil (LPO) with the optimum additive ratio produced 30.69% BTE, which was 4.7% lesser than diesel fuel. A considerable decrease in fuel consumption and emissions except for nitrogen oxides (NOx) is recorded. NOx emission increased by 17.3% for the biofuel blend containing RH and DTBP. To control NOx emission, 2% of water was injected into the intake manifold with the fresh intake air. Two percent by vol. was finalised after experimenting four ratios (1%, 2%, 3% and 4%) of water addition. This 2% water reduces 11% of NOx emission and affects the other outputs, denoted with the 8.9% reduced BTE value compared with diesel fuel. Thus, the LPOC combination proved to operate well in the CRDI engine and produces lower NOx emissions than other LPO blends.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available