4.6 Article

LncRNA HCP5 in hBMSC-derived exosomes alleviates myocardial ischemia reperfusion injury by sponging miR-497 to activate IGF1/PI3K/AKT pathway

Journal

INTERNATIONAL JOURNAL OF CARDIOLOGY
Volume 342, Issue -, Pages 72-81

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.ijcard.2021.07.042

Keywords

Bone mesenchymal stem cells; Ischemia; reperfusion; HCP5; Exosome; miR-497; IGF1

Funding

  1. China Postdoctoral Science Foundation [2020M681559]
  2. Medical Science and technology development Foundation, Nanjing Department of Health [YKK20088, ZKX20026]
  3. Affiliated Drum Tower Hospital, Medical School of Nanjing University

Ask authors/readers for more resources

This study aimed to investigate the protective mechanisms of MSCs in I/R, revealing that hBMSC-derived exosomes protect cardiomyocytes against I/R injury by sponging miR-497 to disinhibit the IGF1/PI3K/AKT pathway through interacting with HCP5.
Ischemia/reperfusion (I/R) injury is an inevitable process during heart transplant and suppressing I/R injury could greatly improve the survival rate of recipients. Mesenchymal stem cells (MSCs) have positive effects on I/R. We aimed to investigate the mechanisms underlying the protective roles of MSCs in I/R. Both cell model and rat model of myocardial I/R were used. MTT assay and flow cytometry were used to measure cell viability and apoptosis, respectively. QRT-PCR and western blotting were employed to measure levels of lncRNA HCP5 (HLA complex P5), miR-497, apoptosis-related proteins, and insulin-like growth factor (IGF1)/PI3K/AKT pathway. Dual luciferase assay was used to validate interactions of HCP5 and miR-497, miR-497 and IGF1. Echocardiography was performed to evaluate cardiac function of rats. Serum levels of CK-MB and LDH were measured. H&E and Masson staining were used to examine morphology of myocardial tissues. hBMSC-derived exosomes (hBMSC-Exos) increased the viability of cardiomyocytes following hypoxia/reperfusion (H/R) and decreased apoptosis. H/R diminished HCP5 expression in cardiomyocytes while hBMSC-Exos recovered the level. Overexpression of HCP5 in hBMSC-Exos further enhanced the protective effects in H/R while HCP5 knockdown suppressed. HCP5 directly bound miR-497 and miR-497 targeted IGF1. miR-497 mimics or si-IGF1 blocked the effects of HCP5 overexpression. Further, hBMSC-Exos alleviated I/R injury in vivo and knockdown of HCP5 in hBMSC-Exos decreased the beneficial effects. AntagomiR-497 blocked the effects of HCP5 knockdown. HCP5 from hBMSC-Exos protects cardiomyocytes against I/R injury via sponging miR-497 to disinhibit IGF1/PI3K/AKT pathway. These results shed light on mechanisms underlying the protective role of hBMSC-Exos in I/R.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available