4.7 Article

Subtyping of head and neck squamous cell cancers based on immune signatures

Journal

INTERNATIONAL IMMUNOPHARMACOLOGY
Volume 99, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.intimp.2021.108007

Keywords

Head and neck squamous cell cancer; Cancer subtyping; Clustering analysis; Tumor immune microenvironment; Cancer immunotherapy

Funding

  1. China Pharmaceutical University [3150120001]

Ask authors/readers for more resources

Hierarchical clustering identified three HNSCC subtypes, Immunity-H, Immunity-M, and Immunity-L, with Immunity-H showing the best response to ICIs; somatic copy number alteration was significantly negatively associated with anti-tumor immunity in HNSCC.
Although head and neck squamous cell cancer (HNSCC) is one of the cancer types in which immune checkpoint inhibitors (ICIs) has achieved a certain success, only a subset of HNSCC patients respond to ICIs. Thus, identification of HNSCC subtypes responsive to ICIs is crucial. Using hierarchical clustering, we identified three subtypes of HNSCC, termed Immunity-H, Immunity-M, and Immunity-L, based on the enrichment scores of 28 immune cells generated by the single-sample gene-set enrichment analysis of transcriptome data. We demonstrated that this subtyping method was stable and producible in four different HNSCC cohorts. Immunity-H had the highest levels of immune infiltrates and PD-L1 expression, lowest levels of stemness, intratumor heterogeneity and genomic instability, and favorable prognosis. In contrast, Immunity-L had the lowest levels of immune infiltrates and PD-L1 expression, highest levels of stemness, intratumor heterogeneity and genomic instability, and unfavorable prognosis. We found that somatic copy number alteration had a significant negative association with anti-tumor immunity in HNSCC, while tumor mutation burden showed no significant association. TP53, COL11A1, NSD1, and PKHD1L1 were more frequently mutated in Immunity-H versus Immunity-L, and their mutations were associated with increased immune signatures in HNSCC. Besides immune-related pathways, many stromal and oncogenic pathways were highly enriched in Immunity-H, including cell adhesion molecules, focal adhesion, ECM-receptor interaction, calcium signaling, MAPK signaling, apoptosis, VEGF signaling, and PPAR signaling. The high levels of PD-L1 expression and immune infiltration in Immunity-H indicate that this subtype responds best to ICIs. Our study recaptures the immunological heterogeneity in HNSCC and provide clinical implications for the immunotherapy of HNSCC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available