4.7 Article

High-Temperature Synthesis and Dielectric Properties of LaTaON2

Journal

INORGANIC CHEMISTRY
Volume 60, Issue 21, Pages 16484-16491

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.inorgchem.1c02325

Keywords

-

Funding

  1. Ministerio de Ciencia e Innovacion, Spain [MAT2017-86616R, MAT2017-85232-R, PID2019-107727RB-I00, PID2020113805GB-I00, PID2020-118479RB-I00, CEX2019000917-S]
  2. Generalitat de Catalunya [2017SGR1377, 2017SGR581]

Ask authors/readers for more resources

Developing new synthetic methodologies for perovskite oxynitrides is challenging but essential. This study introduces a novel method for preparing LaTaON2, which can be used as a pigment and photocatalyst. The research reveals the different distribution of oxygen and nitrogen in the I2/m structure, suggesting the synthesis conditions influence the anion order of this perovskite.
The development of new synthetic methodologies of perovskite oxynitrides is challenging but necessary for the search of new compounds and the investigation of new properties. Here, we report a new method of preparation of the perovskite LaTaON2 that has been investigated as a pigment and photocatalyst for water splitting. The synthesis proceeds through the solid-state reactions under N-2 at 1500 degrees C between La2O3, LaN, and Ta3N5 or between LaN and TaON, which are completed after 3 h and lead to sintered, highly crystalline samples with particle sizes up to 1 mu m. Nitrogen-deficient samples LaTaO1+xN2-x with x <= 0.35 are prepared by changing the N/O ratio in the mixture of reactants. Electron diffraction, synchrotron diffraction, and neutron diffraction studies on stoichiometric and nitrogen-deficient compounds indicate that they crystallize in the monoclinic space group I2/m with lattice parameters for LaTaON2 of a = 5.71458(7), b = 8.05987(10), c = 5.74772(6) angstrom, and beta = 89.982(3)degrees. The three anion sites of the I2/m structure are partially occupied by oxygen and nitrogen, with a preference of nitride for two positions with occupancies of 77 and 88%. This anion distribution is different from that reported in previous studies of samples prepared by ammonolysis at lower temperature, suggesting that the synthesis conditions affect the anion order of this perovskite. Optical measurements indicate a band gap of about 1.9 eV, which is close to that observed in samples prepared by other methods. The determined dielectric permittivity for LaTaON2 epsilon(r) approximate to 200, reported for the first time for a highly nitrided pseudocubic perovskite, is similar to that observed in perovskites with one nitrogen per formula.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available