4.7 Article

Causal Support: Modeling Causal Inferences with Visualizations

Journal

Publisher

IEEE COMPUTER SOC
DOI: 10.1109/TVCG.2021.3114824

Keywords

Data visualization; Data models; Diseases; Cognition; Bars; Analytical models; Benchmark testing; Causal inference; visualization; contingency tables; data cognition

Funding

  1. NSF [1930642]
  2. Direct For Computer & Info Scie & Enginr
  3. Div Of Information & Intelligent Systems [1930642] Funding Source: National Science Foundation

Ask authors/readers for more resources

Analysts often make visual causal inferences about possible data-generating models. However, visual analytics (VA) software tends to leave these models implicit in the mind of the analyst, which casts doubt on the statistical validity of informal visual insights. We formally evaluate the quality of causal inferences from visualizations by adopting causal support-a Bayesian cognition model that learns the probability of alternative causal explanations given some data-as a normative benchmark for causal inferences. We contribute two experiments assessing how well crowdworkers can detect (1) a treatment effect and (2) a confounding relationship. We find that chart users' causal inferences tend to be insensitive to sample size such that they deviate from our normative benchmark. While interactively cross-filtering data in visualizations can improve sensitivity, on average users do not perform reliably better with common visualizations than they do with textual contingency tables. These experiments demonstrate the utility of causal support as an evaluation framework for inferences in VA and point to opportunities to make analysts' mental models more explicit in VA software.
Analysts often make visual causal inferences about possible data-generating models. However, visual analytics (VA) software tends to leave these models implicit in the mind of the analyst, which casts doubt on the statistical validity of informal visual insights. We formally evaluate the quality of causal inferences from visualizations by adopting causal support-a Bayesian cognition model that learns the probability of alternative causal explanations given some data-as a normative benchmark for causal inferences. We contribute two experiments assessing how well crowdworkers can detect (1) a treatment effect and (2) a confounding relationship. We find that chart users' causal inferences tend to be insensitive to sample size such that they deviate from our normative benchmark. While interactively cross-filtering data in visualizations can improve sensitivity, on average users do not perform reliably better with common visualizations than they do with textual contingency tables. These experiments demonstrate the utility of causal support as an evaluation framework for inferences in VA and point to opportunities to make analysts' mental models more explicit in VA software.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available