4.8 Article

A Comprehensive Survey of Scene Graphs: Generation and Application

Publisher

IEEE COMPUTER SOC
DOI: 10.1109/TPAMI.2021.3137605

Keywords

Scene graph; visual feature extraction; prior information; visual relationship recognition

Ask authors/readers for more resources

Scene graph is a structured representation of a scene, expressing objects, attributes, and relationships. With the development of computer vision, people aim for a higher level of understanding and reasoning about visual scenes. Scene graphs have attracted researchers' attention as a powerful tool for scene understanding.
Scene graph is a structured representation of a scene that can clearly express the objects, attributes, and relationships between objects in the scene. As computer vision technology continues to develop, people are no longer satisfied with simply detecting and recognizing objects in images; instead, people look forward to a higher level of understanding and reasoning about visual scenes. For example, given an image, we want to not only detect and recognize objects in the image, but also understand the relationship between objects (visual relationship detection), and generate a text description (image captioning) based on the image content. Alternatively, we might want the machine to tell us what the little girl in the image is doing (Visual Question Answering (VQA)), or even remove the dog from the image and find similar images (image editing and retrieval), etc. These tasks require a higher level of understanding and reasoning for image vision tasks. The scene graph is just such a powerful tool for scene understanding. Therefore, scene graphs have attracted the attention of a large number of researchers, and related research is often cross-modal, complex, and rapidly developing. However, no relatively systematic survey of scene graphs exists at present. To this end, this survey conducts a comprehensive investigation of the current scene graph research. More specifically, we first summarize the general definition of the scene graph, then conducte a comprehensive and systematic discussion on the generation method of the scene graph (SGG) and the SGG with the aid of prior knowledge. We then investigate the main applications of scene graphs and summarize the most commonly used datasets. Finally, we provide some insights into the future development of scene graphs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available