4.7 Article

In-Situ Relaxation Rate Measurement in Magnetic Modulated Atomic Magnetometers

Journal

IEEE SENSORS JOURNAL
Volume 22, Issue 1, Pages 248-255

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JSEN.2021.3131734

Keywords

Magnetometers; Optical pumping; Atomic measurements; Magnetic field measurement; Modulation; Optical polarization; Atom optics; Atomic measurements; compact magnetometers; relaxation rate; optical depth

Funding

  1. National Key Research and Development Program of China [2018YFB2002405]
  2. National Natural Science Foundation of China [61903013]

Ask authors/readers for more resources

In this study, a new method for measuring relaxation rate and optical pumping rate in magnetometers is proposed. Through analysis of the optical pumping model, the optical pumping rate and total relaxation can be separated. Experimental results show good agreement with theoretical calculations. This method is advantageous for designing and optimizing magnetometers.
Traditional practice of suppressing low-frequency noise in atomic magnetometers is mainly through the application of magnetic field modulation, while magnetic fields of this kind introduce extra transverse relaxation, which results in a decrease of sensitivity. In this study, a novel method of measuring relaxation rate induced by spin-destruction, wall collisions and modulation magnetic fields is proposed. The optical pumping model is studied both in optical-thin and optical-thick vapor cell through the analysis of total relaxation, thus the optical pumping rate can be separated from total relaxation by analyzing the optical depth. Furthermore, based on the analysis of optical pumping rate and relaxation rate, the polarization of the electron ensemble was evaluated. A compact magnetometer with single-beam configuration is developed for the proof of concept, and the experimental results show good agreements with theoretical calculation. Our method provides a simple and feasible approach to in-situ measurement of transverse relaxation rate and optical pumping rate with physical structure of the device untouched, which is especially advantageous for designing and optimizing compact atomic magnetometers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available