4.6 Article

Local hydrological conditions and spatial connectivity shape invertebrate communities after rewetting in temporary rivers

Journal

HYDROBIOLOGIA
Volume 849, Issue 6, Pages 1511-1530

Publisher

SPRINGER
DOI: 10.1007/s10750-022-04799-8

Keywords

Flow intermittence; Aquatic insects; Functional traits; Spatial connectivity; Network analysis; Dispersal

Funding

  1. CRUE-CSIC
  2. Springer Nature
  3. Agencia de Gestiod'Ajuts Universitaris i de Recerca'' (AGAUR) at the Generalitat de Catalunya'' [2017SGR1643]
  4. Spanish Ministerio de Economia, Industria y Competitividad (MINECO)-Agencia Estatal de Investigacion (AEI) [CTM2017-89295-P]
  5. European Regional Development Fund (ERDF)
  6. MECODISPER project
  7. Serra Hunter programme of the Generalitat de Catalunya''
  8. H2020 European Research and Innovation action Grant Agreement [869226]

Ask authors/readers for more resources

This study investigates the formation of invertebrate communities in temporarily rivers after rewetting and finds that both hydrological conditions and spatial connectivity play important roles. The frequency and duration of drying events decrease taxonomic and functional richness, while time since the most recent rewetting increases these metrics. Network connectivity shows a significant unimodal relationship with taxonomic and functional metrics, while the presence of nearby disconnected streams is negatively related to functional richness and functional dispersion.
Temporary rivers (TRs) dominate global river networks and are increasing in occurrence and spatiotemporal extent. However, few studies have investigated the communities that establish after rewetting events (i.e. the end of the dry phase), when local hydrological conditions can shape the communities through species sorting, and the spatial connectivity of sites can also influence colonisation. Here, we analysed the relative importance of both local hydrological conditions and spatial connectivity on the invertebrate communities of seven not impacted Mediterranean TRs after rewetting. We quantified the frequency and duration of drying events and the time since flow resumed. We also quantified spatial connectivity based on each site's position in the river network (i.e. network connectivity) and the presence of nearby disconnected streams. Overall, we found that both hydrological conditions and network connectivity played a significant role in structuring aquatic invertebrate communities after rewetting. Taxonomic richness, functional richness and functional redundancy decreased with the frequency and duration of drying events and increased with time since the most recent rewetting. Network connectivity showed a significant unimodal relationship with taxonomic and functional metrics. In contrast, the presence of nearby disconnected streams was negatively related to functional richness and functional dispersion. Given that flow intermittence in Mediterranean areas is expected to intensify under future global change scenarios, our results can be helpful to guide future conservation and management actions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available