4.5 Article

A molecular map of long non-coding RNA expression, isoform switching and alternative splicing in osteoarthritis

Journal

HUMAN MOLECULAR GENETICS
Volume 31, Issue 12, Pages 2090-2105

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/hmg/ddac017

Keywords

-

Funding

  1. WellcomeTrust [206194, 91816631/528, DAA_10_1-402]

Ask authors/readers for more resources

Osteoarthritis, a prevalent joint disease causing disability worldwide, lacks curative therapy. In this study, deep RNA sequencing was performed on knee cartilage samples from 124 patients with low and high grades of osteoarthritis. Differential gene expression, novel long non-coding RNA genes, and alterations in transcript usage and splicing were identified, providing insights into the molecular mechanisms of osteoarthritis.
Osteoarthritis is a prevalent joint disease and a major cause of disability worldwide with no curative therapy. Development of disease-modifying therapies requires a better understanding of the molecular mechanisms underpinning disease. A hallmark of osteoarthritis is cartilage degradation. To define molecular events characterizing osteoarthritis at the whole transcriptome level, we performed deep RNA sequencing in paired samples of low- and high-osteoarthritis grade knee cartilage derived from 124 patients undergoing total joint replacement. We detected differential expression between low- and high-osteoarthritis grade articular cartilage for 365 genes and identified a 38-gene signature in osteoarthritis cartilage by replicating our findings in an independent dataset. We also found differential expression for 25 novel long non-coding RNA genes (lncRNAs) and identified potential lncRNA interactions with RNA-binding proteins in osteoarthritis. We assessed alterations in the relative usage of individual gene transcripts and identified differential transcript usage for 82 genes, including ABI3BP, coding for an extracellular matrix protein, AKT1S1, a negative regulator of the mTOR pathway and TPRM4, coding for a transient receptor potential channel. We further assessed genome-wide differential splicing, for the first time in osteoarthritis, and detected differential splicing for 209 genes, which were enriched for extracellular matrix, proteoglycans and integrin surface interactions terms. In the largest study of its kind in osteoarthritis, we find that isoform and splicing changes, in addition to extensive differences in both coding and non-coding sequence expression, are associated with disease and demonstrate a novel layer of genomic complexity to osteoarthritis pathogenesis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available