4.5 Article

A New Gene Family Diagnostic for Intracellular Biomineralization of Amorphous Ca Carbonates by Cyanobacteria

Journal

GENOME BIOLOGY AND EVOLUTION
Volume 14, Issue 3, Pages -

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/gbe/evac026

Keywords

biomineralization; amorphous calcium carbonates; cyanobacteria; protein structure prediction; phylogeny; glycine zipper motifs; comparative genomics

Funding

  1. Agence Nationale de la Recherche (ANR Harley) [ANR-19-CE44-0017-01]
  2. European Research Council under the European Union [307110, 787904]
  3. Sorbonne Universite doctoral program Interfaces pour le Vivant
  4. Agence Nationale de la Recherche (ANR PHOSTORE) [ANR-19-CE01-0005]
  5. European Research Council (ERC) [787904, 307110] Funding Source: European Research Council (ERC)

Ask authors/readers for more resources

A new gene and protein family associated with cyanobacterial intracellular amorphous calcium carbonate (iACC) biomineralization was identified through comparative genomics. The gene ccyA, when overexpressed, resulted in increased intracellular calcium content in iACC-lacking cyanobacteria. The presence of ccyA was correlated with genes involved in calcium or bicarbonate ion transport and homeostasis, suggesting a functional role in iACC biomineralization. The search for ccyA in publicly available genomes identified additional cyanobacterial strains forming iACC, expanding our understanding of the distribution of cyanobacterial iACC biomineralization.
Cyanobacteria have massively contributed to carbonate deposition over the geological history. They are traditionally thought to biomineralize CaCO3 extracellularly as an indirect byproduct of photosynthesis. However, the recent discovery of freshwater cyanobacteria-forming intracellular amorphous calcium carbonates (iACC) challenges this view. Despite the geochemical interest of such a biomineralization process, its molecular mechanisms and evolutionary history remain elusive. Here, using comparative genomics, we identify a new gene (ccyA) and protein family (calcyanin) possibly associated with cyanobacterial iACC biomineralization. Proteins of the calcyanin family are composed of a conserved C-terminal domain, which likely adopts an original fold, and a variable N-terminal domain whose structure allows differentiating four major types among the 35 known calcyanin homologs. Calcyanin lacks detectable full-length homologs with known function. The overexpression of ccyA in iACC-lacking cyanobacteria resulted in an increased intracellular Ca content. Moreover, ccyA presence was correlated and/or colocalized with genes involved in Ca or HCO3- transport and homeostasis, supporting the hypothesis of a functional role of calcyanin in iACC biomineralization. Whatever its function, ccyA appears as diagnostic of intracellular calcification in cyanobacteria. By searching for ccyA in publicly available genomes, we identified 13 additional cyanobacterial strains forming iACC, as confirmed by microscopy. This extends our knowledge about the phylogenetic and environmental distribution of cyanobacterial iACC biomineralization, especially with the detection of multicellular genera as well as a marine species. Moreover, ccyA was probably present in ancient cyanobacteria, with independent losses in various lineages that resulted in a broad but patchy distribution across modern cyanobacteria.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available