4.7 Article

Designing an efficient and recoverable magnetic nanocatalyst based on Ca, Fe and pectin for biodiesel production

Journal

FUEL
Volume 310, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2021.122456

Keywords

Biodiesel; Transesterification; Methyl esters; Catalysts; Magnetic; Pectin

Funding

  1. POLI
  2. Materials for Medicine and Biotechnology of the Institute of Materials Sciences of Madrid

Ask authors/readers for more resources

Catalysts containing Fe and Ca synthesized in the presence of pectin have been shown to be highly efficient in the transesterification reaction for biodiesel production. The presence of pectin enhances the catalytic activity of the materials, resulting in higher biodiesel production yield under specific process conditions.
Magnetic catalysts containing Fe and Ca synthesized in the presence of pectin have demonstrated to be highly efficient in the transesterification reaction for biodiesel production. Catalysts were prepared by the co precipitation method under a N-2 atmosphere with Na2CO3 from a mixture of FeSO4, FeCl3, Ca(NO3)(2), and pectin followed by calcination at 550 C/6h. The influence of the Fe:Ca molar ratio in the catalytic activity on the transesterification reaction with methanol was evaluated in the presence or absence of pectin. The most efficient catalyst was prepared in the presence of pectin with a Fe:Ca molar ratio of 4.5:2 (FCP2), and the best experimental conditions were at 3 % wt catalyst, 14:1 of methanol: soybean oil molar ration and 7.5 h of reaction time, which resulted in a methyl ester yield of 96.3%. It was shown that the presence of the biopolymer in the synthesis enhances the catalytic activity of the material from 20% to 99% of biodiesel production. All materials were fully characterized by TEM, FTIR, TGA, BET, XRD and DC magnetometry. It was found that catalysts present high surface areas with a nanometer size (similar to 20 nm), giving rise to a superparamagnetic state with a magnetic saturation high enough for separation by means of a magnet. In contrast, catalysts prepared in the absence of pectin demonstrated poor performance in the transesterification reaction of biodiesel in the optimized experimental conditions. The magnetic properties and the biopolymer role are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available