4.5 Article

Potential Capacities of Quantum Channels

Journal

IEEE TRANSACTIONS ON INFORMATION THEORY
Volume 62, Issue 3, Pages 1415-1424

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TIT.2016.2519920

Keywords

Quantum channel; potential capacity; non-additivity; entanglement; Hadamard channel

Funding

  1. Microsoft Visiting Fellowship
  2. ICREA Funding Source: Custom

Ask authors/readers for more resources

We introduce potential capacities of quantum channels in an operational way and provide upper bounds for these quantities, which quantify the ultimate limit of usefulness of a channel for a given task in the best possible context. Unfortunately, except for a few isolated cases, potential capacities seem to be as hard to compute as their plain analogues. We thus study upper bounds on some potential capacities. For the classical capacity, we give an upper bound in terms of the entanglement of formation. To establish a bound for the quantum and private capacity, we first lift the channel to a Hadamard channel and then prove that the quantum and private capacity of a Hadamard channel is strongly additive, implying that for these channels, potential and plain capacity are equal. Employing these upper bounds, we show that if a channel is noisy, however close it is to the noiseless channel, then it cannot be activated into the noiseless channel by any other contextual channel; this conclusion holds for all the three capacities. We also discuss the so-called environment-assisted quantum capacity, because we are able to characterize its potential version.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available