4.4 Article

Hybrid nanofluid flow towards an elastic surface with tantalum and nickel nanoparticles, under the influence of an induced magnetic field

Journal

EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS
Volume 231, Issue 3, Pages 521-533

Publisher

SPRINGER HEIDELBERG
DOI: 10.1140/epjs/s11734-021-00409-1

Keywords

-

Funding

  1. National Natural Science Foundation of China [12172199]

Ask authors/readers for more resources

The physical behavior of a nanofluid composed of kerosene and tantalum and nickel nanoparticles propagating through a porous, elastic surface was studied. Results show that the flow propagates faster for higher values of Darcy number and Tantalum nanoparticles, with the magnetic field opposing the fluid motion. The presence of Tantalum and Nickel nanoparticles also leads to a decrease in the thermal boundary layer.
The nanofluid, composed of kerosene and tantalum and nickel nanoparticles, is propagating through a porous, elastic surface. The kerosene base fluid is incompressible and electrically conducting. The energy equation for this nanofluid is formulated taking into account the viscous dissipation. The mathematical modeling is performed with the help of a similarity transformation. The developed governing equations are numerically solved using the shooting technique and the Matlab software. The physical behavior of different parameters in the model is discussed through tabular and graphical forms. The present results are also compared to past results. The results indicate that the flow propagates faster for higher values of Darcy number and Tantalum nanoparticles and that the magnetic field opposes the fluid motion. Also that the thermal boundary layer decreases in the presence of Tantalum and Nickel nanoparticles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available