4.7 Article

Ginsenoside Rg3 exerts a neuroprotective effect in rotenone-induced Parkinson's disease mice via its anti-oxidative properties

Journal

EUROPEAN JOURNAL OF PHARMACOLOGY
Volume 909, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.ejphar.2021.174413

Keywords

Ginsenoside Rg3; Rotenone; Motor function; Oxidative stress

Funding

  1. Qinghai Province Applied Basic Research Project [2019-ZJ-7023]
  2. Natural Science Foundation of Shandong Province [ZR2020MH377]

Ask authors/readers for more resources

The study demonstrates that ginsenoside Rg3 can significantly improve neuroprotective effects in rotenone-induced Parkinson's disease mice, manifested in enhanced motor function and regulation of oxidative stress.
Ginsenoside Rg3, extracted from Panax ginseng C.A. Meyer, has been shown to possess neuroprotective properties. The present study aims to investigate the neuroprotective effects of ginsenoside Rg3 on rotenone-induced Parkinson's disease mice. Rotenone, a mitochondrial complex I inhibitor, leads to the augmentation of reactive oxygen species production in cells. Male C57/BL6 mice were intragastrically administered rotenone (30 mg/kg) and then treated with ginsenoside Rg3 (5, 10, or 20 mg/kg). Pole, rotarod, and open field tests were performed to evaluate motor function. Ginsenoside Rg3 decreased the climbing time in the pole test (p < 0.01), whereas it increased the latency in the rotarod test (p < 0.01) and the total distance (p < 0.01) and mean speed in the open field test (p < 0.01). Ginsenoside Rg3 treatment augmented the number of tyrosine hydroxylase-positive neurons in the substantia nigra (p < 0.01), mean density of tyrosine hydroxylase-positive nerve fibers (p < 0.01), and dopamine content (p < 0.01) in the striatum and reduced the reactive oxygen species level in the substantia nigra (p < 0.01). Glutathione cysteine ligase regulatory subunit and glutathione cysteine ligase modulatory subunit expression levels were elevated in the ginsenoside Rg3 groups. Ginsenoside Rg3 also improved motor function in rotenone-induced Parkinson's disease mice. The neuroprotective effects of ginsenoside Rg3 are at least partly associated with its anti-oxidative properties via regulation of glutathione cysteine ligase modulatory subunit and glutathione cysteine ligase regulatory subunit expression.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available