4.7 Review

A review on morphology, nanostructure, chemical composition, and number concentration of diesel particulate emissions

Journal

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
Volume 29, Issue 11, Pages 15432-15489

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-021-15999-5

Keywords

Particle-size and number distribution; Elemental carbon; Organic carbon; PM microstructure and nanostructure

Funding

  1. CSIR through SRA (Scientists' Pool) scheme

Ask authors/readers for more resources

This study presents a review of the physical and chemical characteristics of particulate emissions from compression ignition (CI) engines. It was found that engine operating parameters and alternative fuels have significant effects on the particle number concentration, morphology, nanostructure, and oxidative reactivity of the particulate matter (PM).
Particulate matter (PM) emitted from compression ignition (CI) engines (diesel engines) has a detrimental effect on human health and the environment. The physical and chemical characteristics of PM emitted from CI-engines are influenced by engine operating conditions and fuel properties. The morphology, nanostructure, and chemical composition of PM affect its toxicity and interaction with the environment. From automotive industry perspective, these parameters influence the design of diesel particulate filters. This study presents a review of the physical and chemical characteristics of particulate emissions from the CI-engine. The present study commences with a brief description about the composition of PM emitted from CI-engine and the PM formation mechanism in CI-engine. Later on, the detailed review of PM's physical and chemical characteristics and the effect of engine operating parameters and alternative fuels on the particle number concentration, morphology, nano-structure, and oxidative reactivity of PM is presented. Online and offline methods of diesel particulate characterization and emerging chemical characterization techniques such as X-ray photoelectron spectroscopy and X-ray absorption fine structure (EXAFS) are also discussed briefly. Correlation between physical and chemical properties, and oxidative reactivity of PM is also discussed. It was found that engine operating parameters affect the physical and chemical properties of PM. Use of alternative fuels changes the diesel particulate morphology, nanostructure, and chemical composition which enhances the oxidative reactivity of PM.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available