4.7 Article

Combustion, performance, and emission characteristics of diesel engine using oxyhydrogen gas as a fuel additive

Journal

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
Volume 30, Issue 10, Pages 24842-24855

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-021-17975-5

Keywords

Brown's gas; Oxyhydrogen gas; CI engine; Combustion; Performance; Emissions

Ask authors/readers for more resources

This research investigates the use of Brown's gas as a fuel additive to reduce environmental pollution in compression ignition engines. The results show that oxyhydrogen gas provides promising benefits in terms of better combustion and low emissions.
A lot of research is being carried out to reduce the environmental pollution resulting from compression ignition engines. For this, various gaseous fuels are being explored as fuel additives in compression ignition engines. The purpose of this research work is to investigate rarely explored Brown's gas (oxyhydrogen gas) in CI engines to reduce environmental pollution. Brown's gas was produced by electrolysis of distilled water with potassium hydroxide as a catalyst. A common rail direct injection CI engine was used for the present investigation. Detail combustion, performance, and emission analyses were carried out, which is scarcely reported in oxyhydrogen gas fuel investigations in compression ignition engines. Oxyhydrogen was injected at varying flow rates of 200 ml/min, 400 ml/min, 600 ml/min, and 800 ml/min in the intake manifold of the CI engine equipped with an electronically controlled common rail direct injector. The peak pressure and maximum heat release rate increased with the increasing concentration of oxyhydrogen gas. The comparison was made between conventional diesel combustion and oxyhydrogen gas addition of 800 ml/min at 75% load. The reduction in CO and HC emissions was about 37.5% and 17.94% respectively. CO2 and NOx emissions increased by 9.37% and 7.41% respectively. Very low smoke emission of 0.01 to 0.02% was recorded at 800 ml/min oxyhydrogen gas flow rate. Thus, it can be concluded that oxyhydrogen gas provides promising benefits in terms of better combustion and low emissions. However, it is recommended to carry out further research to incorporate the use of this additive in actual automobile applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available