4.8 Article

Molecular Probing of DOM Indicates a Key Role of Spruce-Derived Lignin in the DOM and Metal Cycles of a Headwater Catchment: Can Spruce Forest Dieback Exacerbate Future Trends in the Browning of Central European Surface Waters?

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 56, Issue 4, Pages 2747-2759

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.1c04719

Keywords

dissolved organic matter source; brownification; metal biogeochemical cycles; molecular scale; environmental change; spruce forest; peatland

Funding

  1. German Science Foundation (DFG Research Grant) [BI 734/18-1]

Ask authors/readers for more resources

Peatlands and coniferous forests in the Northern Hemisphere and Central Europe are experiencing significant environmental changes, resulting in browning of surface waters and elevated concentrations of dissolved organic matter (DOM) and metals. This has implications for global carbon cycle, peatland and forest management, and water treatment. A study in the Harz Mountains, Germany, found strong relationships between DOM and metals, with seasonal variations in DOM quality and DOM-metal binding mode. The products of polyphenols play a key role in DOM-metal complexes.
Peatlands of the Northern Hemisphere and Central European coniferous forests experience significant environmental change. The resultant browning of surface waters, that is, elevated concentrations of dissolved organic matter (DOM) and metals, is of interest in the context of the global C cycle, peatland and forest management, and water treatment. In an attempt to identify the causes of this process in the Harz Mountains (Central Germany), we studied the spatiotemporal variations in DOM molecular composition (thermally assisted hydrolysis and methylation combined with GC-MS) and metal concentrations in headwater stream samples. We found strong relationships between DOM and metals and seasonal variations in the DOM quality and tentatively DOM-metal binding mode: during summer base flow, DOM and metal concentrations are low, and all elements other than the alkali and alkaline earth metals (Ca, Mg, Sr, K, and Na) are positively correlated to DOM, whereas during spring and autumn (high discharge), only metals with strong affinity for DOM (Fe, As, Cu, Cr, Pb, and Ti), but not weakly binding ones (Al, Cd, La, Mn, Ni, Zn, and Zr), are correlated to DOM, indicative of selectivity in DOM-metal interactions. The products of polyphenols are the key ingredients of the DOM-metal complexes. We argue the importance of spruce lignin-derived vanillic acid moieties, which are involved in weak (all seasons) and strong, multidentate and/or colloidal, binding (spring and autumn) of metals. Considering the ongoing spruce forest dieback and climate change acceleration, it is tempting to conclude that spruce necromass and forest soils may release vast amounts of lignin-derived DOM and associated metals to headwater streams. This would have significant implications for forest soil C stocks and the management of connected drinking water reservoirs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available