4.7 Article

Recirculation of reject water in deep-dewatering process to influent of wastewater treatment plant and dewaterability of sludge conditioned with Fe2+/H2O2, Fe2+/Ca(ClO)2, and Fe2+/Na2S2O8: From bench to pilot-scale study

Journal

ENVIRONMENTAL RESEARCH
Volume 203, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.envres.2021.111825

Keywords

Waste activated sludge; Advanced oxidation processes; Chloride and heavy metals; Filtrate recirculation; Deep-dewatering

Funding

  1. National Natural Science Foundation of China [51908234, 51708239, U1901216]
  2. Natural Science Foundation of Hubei Province [2020CFA042]
  3. National Key Research and Development Program of China [2018YFD1100604]
  4. Wuhan City Drainage Development Co., Ltd.

Ask authors/readers for more resources

The study showed that sewage sludge treated with advanced oxidation processes (AOPs) could achieve efficient deep dewatering, and the direct recirculation of deep-dewatering filtrate back to wastewater treatment plants was feasible. Different conditioning methods affected the properties of the deep-dewatered sludge, with most heavy metals and chlorine elements remaining in the dewatered sludge cake.
Deep dewatering of sewage sludge pretreated with advanced oxidation processes (AOPs) is a strategy for efficient sludge reduction and subsequent disposal. The pretreatment and dewatering performance of sludge conditioned with three types of AOPs (Fe2+/H2O2, Fe2+/Ca(ClO)(2), and Fe2+/Na2S2O8), compared with sludge conditioned with traditional conditioner (Fe3+/CaO), were investigated in both bench and pilot-scale tests. All of those conditioner systems could reduce the water content of dewatered sludge cake to below 60 wt% in bench-scale (about 16 kg raw sludge per round) and pilot-scale (approximate 800 kg raw sludge per round) diaphragm fil-ter press dewatering. Compared with raw sludge, the deep-dewatering filtrate after different conditioning and dewatering processes had higher ammonia nitrogen (NH4+-N) and chemical oxygen demand (COD) contents due to the degradation of organic matter, and much lower total phosphorus (TP) content due to the formation of iron phosphate precipitate. A better biodegradability (i.e. higher BOD5/COD ratio) was found in the deep-dewatering filtrate of sludge conditioned with Fe2+/H2O2 (25.2 %) and Fe2+/Ca(ClO)(2) (17.4 %). Most of the heavy metals (Cr, Cu, Ni, and Pb) (>79 wt%) have remained in the dewatered sludge cake, and most of the Cl element (>90 wt %) in the sludge pretreated by Fe2+/Ca(ClO)(2) and Fe3+/CaO was kept in the filtrate, rather than the dewatered sludge cake. Based on the pilot-scale experimental results, if all the filtrate in the deep-dewatering process returned to the influent of WWTP, the loading ratios of TP, NH4+-N, COD in the four conditioner systems were less than 3 wt%. The above results proved that the AOPs conditioned sludge could achieve deep-dewatering in pilot-scale and the direct recirculation of deep-dewatering filtrate to the influent of wastewater treatment plant was feasible.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available