4.7 Article

Detection of selected tire wear compounds in urban receiving waters*

Journal

ENVIRONMENTAL POLLUTION
Volume 287, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2021.117659

Keywords

Road runoff; Tire wear; Storm events; Diphenylguanidine; Hexamethoxymethylmelamine; 6PPD-Quinone

Funding

  1. Natural Sciences and Engineering Research Council (NSERC) of Canada

Ask authors/readers for more resources

The study found that road runoff can transport chemicals from tire wear into receiving waters, posing a threat to aquatic organisms.
Road runoff is an important vector for the transport of chemicals originating from tire wear into receiving waters. In this study, samples of surface water were collected in the summer of 2020 from two rivers near high-traffic corridors in the Greater Toronto Area (GTA) in Canada. These samples were analyzed for two additives used in tire production, 1,3-diphenyl guanidine (DPG) and hexamethoxymethylmelamine (HMMM), as well 26 of the transformation compounds of HMMM. In addition, samples were analyzed for 6PPD-quinone (6PPD-q), an oxidation by-product of a tire additive that was recently identified as a candidate compound responsible for mass mortalities of Coho salmon (Oncorhynchus kisutch) in spawning streams in the USA. Grab and composite samples were collected during rain events (i.e., wet events) at both locations. Grab samples were collected from the Don River upstream, downstream and at the point of discharge from a municipal wastewater treatment plant (WWTP) during a period of dry weather. Of the target analytes, 6PPD-q, DPG and HMMM, as well as 15 of the transformation compounds of HMMM, were detected at concentrations above limits of quantitation. The concentrations of 6PPD-q in the receiving waters during wet events were within the range of the LC50 for adult Coho salmon. One of the transformation products (TPs) of HMMM, dimethoxymethylmelamine was detected in a composite sample from Highland Creek at an estimated concentration greater than 10 mu g/L, indicating that more research is needed to evaluate the potential hazards to the aquatic environment from this compound. Sampling in the Don River during a dry period showed that discharges of wastewater from WWTPs are also continuous sources of the TPs of HMMM. This study contributes to the growing literature showing that chemicals derived from tire wear are ubiquitous in urban watersheds and may be a significant hazard to aquatic organisms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available