4.7 Article

Selenium-amended biochar mitigates inorganic mercury and methylmercury accumulation in rice (Oryza sativa L.)

Journal

ENVIRONMENTAL POLLUTION
Volume 291, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2021.118259

Keywords

Biochar; Selenium; Inorganic mercury; Methylmercury; Accumulation; Rice

Ask authors/readers for more resources

The study showed that the addition of biochar and sodium selenite-amended biochar can reduce MeHg generation in paddy soil and effectively mitigate MeHg accumulation in rice. The 5% BC + Se treatment had the most significant impact on reducing MeHg levels in rice grains.
Rice, as a dominant crop in China and Asia, can be a major route of methylmercury (MeHg) exposure for humans in inland China, especially in those living in mercury (Hg) polluted areas. Soil is the most prominent MeHg accumulation source for rice grains. The development of management practices to reduce MeHg in rice grains is crucial. This study explored the mitigation effect of biochar (BC) and sodium selenite-amended biochar (BC + Se) on MeHg production in paddy soil and accumulation in rice. Mercury-contaminated soil was treated with 1% and 5% of both BC and BC + Se. Soil MeHg concentration slightly increased under 1% BC/BC + Se compared to control soil but decreased at the rate of 5%. Moreover, soil phytoavailable MeHg (P-MeHg) diminished as the amount of Se-amended BC increased. BC + Se effectively mitigated MeHg accumulation in rice grains. The highest average contents of MeHg and inorganic Hg (IHg) in rice seeds were found in the control samples, followed by the 1%-BC, 5%-BC, 1%-BC + Se, and 5%-BC + Se samples. Under the 5%-BC + Se treatment, rice MeHg levels were reduced significantly (94%) compared to the control, and P-MeHg concentrations in soil were lower than all the other experimental groups throughout the rice-growing season. These results demonstrate the effectiveness of BC + Se in reducing MeHg and IHg accumulation in rice and could be employed for remediation of Hg polluted paddies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available