4.7 Article

Object-Based Morphological Profiles for Classification of Remote Sensing Imagery

Journal

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
Volume 54, Issue 10, Pages 5952-5963

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TGRS.2016.2576978

Keywords

Land use/land cover (LULC) classification; mathematical morphology; morphological profiles (MPs); object-based image analysis (OBIA); supervised classification; very high resolution imagery

Funding

  1. German Federal Ministry for Economic Affairs and Energy's initiative Smart Data-innovations from data [01MD15008B]

Ask authors/readers for more resources

Morphological operators (MOs) and their enhancements such as morphological profiles (MPs) are subject to a lively scientific contemplation since they are found to be beneficial for, for example, classification of very high spatial resolution panchromatic, multi-, and hyperspectral imagery. They account for spatial structures with differing magnitudes and, thus, provide a comprehensive multilevel description of an image. In this paper, we introduce the concept of object-based MPs (OMPs) to also encode shape-related, topological, and hierarchical properties of image objects in an exhaustive way. Thereby, we seek to benefit from the so-called object-based image analysis framework by partitioning the original image into objects with a segmentation algorithm on multiple scales. The obtained spatial entities (i.e., objects) are used to aggregate multiple sequences obtained with MOs according to statistical measures of central tendency. This strategy is followed to simultaneously preserve and characterize shape properties of objects and enable both the topological and hierarchical decompositions of an image with respect to the progressive application of MOs. Subsequently, supervised classification models are learned by considering this additionally encoded information. Experimental results are obtained with a random forest classifier with heuristically tuned hyperparameters and a wrapper-based feature selection scheme. We evaluated the results for two test sites of panchromaticWorldView-II imagery, which was acquired over an urban environment. In this setting, the proposed OMPs allow for significant improvements with respect to classification accuracy compared to standard MPs (i.e., obtained by paired sequences of erosion, dilation, opening, closing, opening by top-hat, and closing by top-hat operations).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available